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Clustering and Functional Analysis of 
Coordinately Regulated Genes	





Clustering  Coordinately 
Regulated Genes 

•  What are the goals of typical expression 
experiments?	



•  How can we determine if two genes are 
‘coexpressed’?	



•  What can we infer when we decide that two 
genes are coexpressed?	





Visualizing Data 
MAK16
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Experiments 
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Visualizing Data (cont.) 
Expression During Sporulation
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Organizing Data 
In microarray studies, 
we often use clustering 
algorithms to help us 
identify patterns in 
complex data. 

For example, we can 
randomize the data 
used to represent this 
painting and see if 
clustering will help us 
visualize the pattern. 



Clustering algorithms 

First, we represent the painting in black and white. 



Clustering algorithms 

The painting is “sliced” into rows which are then randomized. 



Clustering algorithms 

Rows ordered by hierarchical clustering with nodes 
flipped to optimize ordering 



Clustering algorithms 

Rows ordered by using a Self-Organizing Map (SOM)!



From Eisen MB, et al, PNAS 1998 95(25):14863-8  

Random vs. Biological Data 
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Types of Clustering 

•  Agglomerative	


–  Bottom up approach	


–  Different variants of hierarchical clustering	


–  This is the typical clustering you see	



•  Partitioning / Divisive	


–  Top down approach	


–  K-means Clustering	


–  Self-Organizing Maps	



•  All require the ability to compare expression 
patterns to each other.	





How do we compare expression 
profiles? 

•  Treat expression data for a gene as a 
multidimensional vector.	



•  Use a distance/correlation metric to 
compare the vectors.	





Similar expression 

•  Crucial concept for understanding clustering 

•  Each gene is represented by a vector where coordinates 
are its values - log(ratio) - in each experiment 

•   x = log(ratio)expt1 
•   y = log(ratio)expt2 
•   z = log(ratio)expt3 
•   etc. 

Expression Vectors 

x 

y 

z 



•  Distances or correlations are measured 
“between” expression vectors 

•  Many different ways to measure distance: 

•  Euclidean distance 
•  Pearson correlation coefficient(s) 
•  Spearman’s Rank Correlation 
•  Manhattan distance 
•  Mutual information 
•  Kendall’s Tau 
•  etc. 

•  Each has different properties and can reveal 
different features of the  data 

Distance metrics 



Euclidean distance 

•  Euclidean distance 
metrics detect similar 
vectors by identifying 
those that are closest 
in space.  In this 
example, Gene A and 
C are closest.	
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Pearson correlation 

•  The Pearson correlation 
disregards the magnitude 
of the vectors but instead 
compares their 
directions.  In this 
example, Gene A and 
Gene B have the same 
slope, so would be most 
similar to each other.	
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Agglomerative Hierarchical 
Clustering 

1.  Compare all expression patterns to each other. 

2.  Join patterns that are the most similar out of all 
patterns. 

3.  Compare all joined and unjoined patterns. 

4.  Go to step 2, and repeat until all patterns are 
joined. 

Need a rule to decide how to compare clusters to each other	
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Single linkage Clustering 

+	



+	



Nearest Neighbor	



This method produces 
long chains which 
form straggly clusters.	
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Complete Linkage Clustering 

+	



+	



Uses the Furthest 
Neighbor	



This method tends to 
produce very tight 
clusters of similar 
patterns	
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 The red and blue ‘+’ 
signs mark the 
centroids of the two 
clusters.	



Average (only 
shown for two 
cases) 

Average Linkage Clustering 
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 The red and blue ‘+’ 
signs mark the 
centroids of the two 
clusters.	



Centroid 

Centroid Linkage Clustering 



And we get a cluster: 
Single	

 Complete	

 Average	

 Centroid	





Two-way clustering 

•  Just as gene patterns are clustered, array 
patterns can be clustered.	



•  All the data points for an array can be used 
to construct a vector for that array and the 
vectors of multiple arrays can be compared.	





Two-way Clustering 
Two-way clustering can help show which 
samples are most similar, as well as which 
genes. 



Agglomerative Hierachical 
Clustering 

Advantages: 
•   Simple 
•   Easy to implement 
•   Easy to visualize 

Disadvantages: 
•   Can lead to artifacts 
•   Discarding of subtleties in 2-way  clustering	





Partitioning Methods 

•  Split data up into smaller, more homogenous 
sets 

•  Should avoid artifacts associated with 
incorrectly joining dissimilar vectors 

•  Can cluster each partition independently of 
others, by genes and arrays 

•  Self-Organizing Maps and k-means 
clustering are two possible partitioning 
methods	





Self Organizing Maps 
•  Create a ‘Map’ of ‘n’ partitions, that is 

modeled on the expression data, where 
each partition in the map has an 
associated vector.	



•  Genes’ expression vectors are assigned 
to the partition with the most similar 
associated vector.	



•  Neighboring partitions are more similar 
to each other than they are to distant 
partitions.	





Repeat 100,000 times	



The Map Is Disorganized	

The Map Is Organized	





K-means Clustering 

•  Split data into ‘n’ partitions, each with 
an associated vector.	



•  Assign genes to partitions, and 
recalculate the vector associated with 
each partition as the centroid of its 
associated genes.	



•  Repeat until solution converges, or for 
a fixed number of iterations.	





Divisive Hierarchical 
Clustering 

•  Iteratively use k-means clustering, with k 
set to 2.	



•  Successively divide data into smaller and 
smaller subsets.	



•  Allows you to build a tree describing how 
the data were successively split, similarly to 
agglomerative hierarchical clustering.	





Agglomerative vs. Divisive 

Agglomerative:	



Chipman and Tibshirani, 2006	





Agglomerative vs. Divisive 

Chipman and Tibshirani, 2006	



Agglomerative	

 Divisive	





Summary For Clustering 

•  Many different methods exist for finding 
groups and patterns in data (including some 
I haven’t mentioned).	



•  Many different parameters can be used in 
those methods.	



•  Caution should be exercised in interpreting 
the results.	





Comparing Different 
Clustering Methods 

•  Hierarchical clustering? 	

	


– Single, Average, Complete, Centroid linkage, 

etc.?	


•  Self Organizing Maps	


•  K-means clustering	


•  Other algorithms?	



Which technique is right? 



What is a ‘cluster’? 

– And how do we know if it’s any good, or if one 
technique for producing clusters is better than 
another?	



•  Rather than think simply of clustering, think 
of all these methods as capable of producing 
groups of genes:	





cu
t	



One cluster to two groups of genes	





cu
t	



One cluster to three groups of genes	





Now what? 

•  Try many methods, and demand they each 
produce the same number of groups of 
genes.	



•  Is there a metric that says which did best for 
a given number of groups?	



•  Can we come up with a metric for the best 
number of groups?	





What do we think that co-
expression means? 

•  Our general assumption is guilt by 
association:	


	

i.e. genes with similar expression patterns 
are more likely to participate in the same 
biological process.	



•  Therefore, we can exploit the Gene 
Ontology to assess our clusters:	





How do we measure how 
‘good’ the annotation is?  

•  Use a score that measures how coherent the 
level of annotation is compared to what 
would be expected from random clusters.	


–  see Gibbons and Roth (2002).  Genome 

Research 12, 1574-1581.	


– Developed system, such that the higher the 

score, the better the annotation fit the 
clustering.	





Ratio-metric Intensity 

Figure 2.  Four data sets clustered using k-means, hierarchical, and self-
organized map algorithms. The horizontal axis shows the number of 
clusters desired, and the vertical axis shows z-scores. Data sets are (a) 
Cho, (b) CJRR, (c) Gasch, and (d) Spellman. 

Gibbons F. D., Roth F. P. Genome Res. 2002;12:1574-1581 



Characterization of clusters 

•  Now we have groups of genes that best fit 
their annotation, find the best annotation(s) 
that fits those groups.	



•  Calculate P-values for each GO term’s 
association to a cluster, and choose those 
that are most significant.	





Using the Gene Ontology to 
assess clusters 

•  Many microarray analyses result in a list 
of interesting genes	



•  Typically biologists can make up a story 
about any random list	



•  So, look at all GO annotations for the 
genes in a list, and see if the number of 
annotations for any GO node is significant	





•  Biological Process = goal or objective 	

 	

(Why)	



(e.g. DNA replication, Cell Cycle Control, Cell adhesion)	



•  Molecular Function = elemental activity/task	

 	

(What)	



(e.g. Transcription factor, polymerase, protein kinase)	



•  Cellular Component = location or complex 	

 	

(Where)	



(e.g. pre-replication complex, kinetochore, membrane)	



Each Category is a structured, controlled vocabulary	





A child is a subset of	


a parent’s elements	



Nucleus	



Nucleoplasm	

 Nuclear	


envelope	

 Chromosome	

 Perinuclear 

space	


Nucleolus	



The cell component term 	


Nucleus has 5 children 	





Determining P-values for GO 
annotation for a list of genes 

We can calculate the probability of having x of n genes 
having an annotation to a GO node, given that in the 
genome, M of N genes have that annotation, using the 
hypergeometric distribution, as: 	
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Determining GO significance 

To calculate a P-value, we calculate the probability 
of having at least x of n annotations:	



P-value =	
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Then do multiple hypothesis correction on the p-values	
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Methionine Cluster 



GO Annotations 
•  sulfur metabolic process   : 2.43e-19 (12/18 vs 66/6608) 

•  methionine metabolic process  : 1.40e-14 (10/18 vs 24/6608) 
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