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Clustering Coordinately
Regulated Genes

* What are the goals of typical expression
experiments?

* How can we determine 1f two genes are
‘coexpressed’?

* What can we infer when we decide that two
genes are coexpressed?



Visualizing Data
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Extracting Data
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Visualizing Data (cont.)

Log Ratio

Expression During Sporulation
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Organizing Data

In microarray studies,
we often use clustering
algorithms to help us
identify patterns in
complex data.

For example, we can
randomize the data
used to represent this
painting and see if
clustering will help us
visualize the pattern.



Clustering algorithms

First, we represent the painting in black and white.



Clustering algorithms
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The painting is “sliced” into rows which are then randomized.



Clustering algorithms
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Clustering algorithms
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Random vs. Biological Data

start clustered randoml random2 random3

— — —— = E ’; — - =

'r
””

"

o g
el 1 'ﬂrﬂz |

[

I

A b

|
i

m

=
==
_=ail
——
—= ="
=
==

I |

i

i o dod) ol A

From Eisen MB, et al, PNAS 1998 95(25):14863-8



Goal of Clustering
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Types of Clustering

e Agglomerative
— Bottom up approach
— Different variants of hierarchical clustering
— This 1s the typical clustering you see
e Partitioning / Divisive
— Top down approach
— K-means Clustering
— Self-Organizing Maps
e All require the ability to compare expression
patterns to each other.



How do we compare expression
profiles?

e Treat expression data for a gene as a
multidimensional vector.

e Use a distance/correlation metric to
compare the vectors.



Expression Vectors

e Crucial concept for understanding clustering

e Each gene is represented by a vector where coordinates
are its values - log(ratio) - in each experiment

* x = log(ratio)

_ expt1
* y = log(ratio)e,p
e 7= Iog(ra’[io)expt3

* etc. Similar expression



Distance metrics

Distances or correlations are measured
“between” expression vectors

Many different ways to measure distance:

Euclidean distance

Pearson correlation coefficient(s)
Spearman’s Rank Correlation
Manhattan distance

Mutual information

Kendall’s Tau

etc.

Each has different properties and can reveal
different features of the data



Euclidean distance

e Euclidean distance
metrics detect similar
vectors by identifying
those that are closest
in space. In this
example, Gene A and
C are closest.
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Pearson correlation
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Agglomerative Hierarchical
Clustering

1. Compare all expression patterns to each other.

2. Join patterns that are the most similar out of all
patterns.

3. Compare all joined and unjoined patterns.

4. Go to step 2, and repeat until all patterns are
joined.

Need a rule to decide how to compare clusters to each other




Visualization of Hierarchical Clustering
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Single linkage Clustering

Nearest Neighbor

This method produces
° p long chains which
o + form straggly clusters.




Complete Linkage Clustering

Uses the Furthest
Neighbor °

+

» T'his method tends to
. produce very tight
clusters of similar
patterns




Average Linkage Clustering

Average (only o
shown for two <
cases) e The red and blue ‘+’
@ .
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centroids of the two
clusters.




Centroid Linkage Clustering

Centroid

The red and blue ‘+’
signs mark the
centroids of the two
clusters.




And we get a cluster:
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Two-way clustering

* Just as gene patterns are clustered, array
patterns can be clustered.

* All the data points for an array can be used
to construct a vector for that array and the
vectors of multiple arrays can be compared.



Two-way Clustering

Two-way clustering can help show which
samples are most similar, as well as which

genes. Proliferation Cluster
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Agglomerative Hierachical
Clustering

Advantages:

* Simple

» Easy to implement
- Easy to visualize

Disadvantages:
» Can lead to artifacts
 Discarding of subtleties in 2-way clustering



Partitioning Methods

Split data up into smaller, more homogenous
sets

Should avoid artifacts associated with
iIncorrectly joining dissimilar vectors

Can cluster each partition independently of
others, by genes and arrays

Self-Organizing Maps and k-means
clustering are two possible partitioning
methods



Self Organizing Maps

1 | 2

e Create a ‘Map’ of ‘n’ partitions, that is oot (s GneE

modeled on the expression data, where iB 1

each partition in the map has an
associated vector.

ﬂ (0 l)n 91 (1,1)n8 | @2,)n=105
B|S|J B|S|J

* (Genes’ expression vectors are assigned
to the partition with the most similar
associated vector.

|| ©,2n=8 [ (1,2)n=142 [ (2,2)n=112
[ BIS|JT B|S|J B|S|J

e Neighboring partitions are more similar
to each other than they are to distant

partitions.



Repeat 100,000 times




K-means Clustering

e Split data into ‘n’ partitions, each with
an associated vector.

e Assign genes to partitions, and
recalculate the vector associated with
each partition as the centroid of its
associated genes.

* Repeat until solution converges, or for
a fixed number of iterations.




Divisive Hierarchical
Clustering

* [Iteratively use k-means clustering, with k
set to 2.

* Successively divide data into smaller and
smaller subsets.

* Allows you to build a tree describing how
the data were successively split, similarly to
agglomerative hierarchical clustering.



Agglomerative vs. Divisive

Agglomerative:




Agglomerative vs. Divisive

Agglomerative Divisive
Bottom-Up Top-Down Hybrid

il

Chipman and Tibshirani, 2006



Summary For Clustering

* Many different methods exist for finding
groups and patterns 1n data (including some
I haven’t mentioned).

 Many different parameters can be used 1n
those methods.

e Caution should be exercised in interpreting
the results.



Comparing Different
Clustering Methods

Which technique is right?

e Hierarchical clustering?

— Single, Average, Complete, Centroid linkage,
etc.?

e Self Organizing Maps
* K-means clustering
e Other algorithms?



What is a ‘cluster’?

— And how do we know if it’s any good, or if one
technique for producing clusters 1s better than
another?

e Rather than think simply of clustering, think
of all these methods as capable of producing
groups of genes:



One cluster to two groups of genes
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One cluster to three groups of genes
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Now what?

* Try many methods, and demand they each
produce the same number of groups of
genes.

* Is there a metric that says which did best for
a given number of groups?

e Can we come up with a metric for the best
number of groups?



What do we think that co-
expression means?

e Our general assumption 1s guilt by
association:

1.e. genes with similar expression patterns
are more likely to participate in the same
biological process.

* Therefore, we can exploit the Gene
Ontology to assess our clusters:



How do we measure how
‘good’ the annotation is?

e Use a score that measures how coherent the
level of annotation 1s compared to what
would be expected from random clusters.

— see Gibbons and Roth (2002). Genome
Research 12, 1574-1581.

— Developed system, such that the higher the
score, the better the annotation fit the
clustering.
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Characterization of clusters

* Now we have groups of genes that best fit
their annotation, find the best annotation(s)
that fits those groups.

e (Calculate P-values for each GO term’s
association to a cluster, and choose those
that are most significant.



Using the Gene Ontology to
assess clusters

 Many microarray analyses result in a list
of interesting genes

* Typically biologists can make up a story
about any random list

* So, look at all GO annotations for the
genes 1n a list, and see if the number of
annotations for any GO node 1s significant



The Categories of GO
(The Gene Ontology)

* Biological Process = goal or objective (Why)
(e.g. DNA replication, Cell Cycle Control, Cell adhesion)

* Molecular Function = elemental activity/task (What)
(e.g. Transcription factor, polymerase, protein kinase)

e Cellular Component = location or complex (Where)
(e.g. pre-replication complex, kinetochore, membrane)

Each Category is a structured, controlled vocabulary



Parent-Child Relationships

] Nucleus
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Nucleoplasm ~ Nuclear  Nycleolus Chromosome — Perinuclear
envelope space

A child is a subset of The cell component term
a parent’s elements Nucleus has 5 children



Determining P-values for GO
annotation for a list of genes

We can calculate the probability of having x of n genes
having an annotation to a GO node, given that in the
genome, M of N genes have that annotation, using the
hypergeometric distribution, as:

MYN-M
X n—X

AN

P = (N
\n




Determining GO significance

To calculate a P-value, we calculate the probability
of having at least x of n annotations:

MIN=-M
x—1| = .
l n—I
P-value= 1— %Y
valuc % (N
i

Then do multiple hypothesis correction on the p-values
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GO Annotations
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