Computational Molecular Biology Biochem 218 – BioMedical Informatics 231 <u>http://biochem218.stanford.edu/</u>

Discovering Transcription Factor Binding Sites in Co-Regulated Genes

Doug Brutlag Professor Emeritus Biochemistry & Medicine (by courtesy)

Doug Brutlag 2010

Motivation

MicroArray analysis of whole genome gene expression Clustering of genes based on their expression pattern Searching for conserved sequence motifs regulating the expression

Human Gene Expression Signatures

T Cells Signaling

DNA Damage

Fibroblast Stimulation

B Cells Signaling

CMV Infection

Anoxia

Polio Infection Monocytes Signaling IL4 Hormone

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

GATGGCTGCACCACGTGTATGCACG	Pho 5
CACATCGCATCACGTGACCAGTGAC	Pho 8
GCCTCGCACGTGGTGGTACAGTAAC	Pho 81
TCTCGTTAGGACCATCACGTGAACA	Pho 84
CGCTAGCCCACGTGGATCTTGAAGA	Pho

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

GATGGCTGCACCACGTGTATGC . . . ACGATGTCTCGC CACATCGCATCACGTGACCAGT . . . GACATGGACGGC GCCTCGCACGTGGTGGTACAGT . . . AACATGACTAAA TCTCGTTAGGACCATCACGTGA . . . ACAATGAGAGCG CGCTAGCCCACGTGGATCTTGT . . . AGAATGGCCTAT

Finding Transcription Factor Binding Sites

Upstream Regions

Co-expressed Genes

 ATGGCTGCAC
 CACGTTTATGC...ACGATGTCTCGC

 CACATCGCAT
 CACGTGACCAGT...GACATGGACGGC

 GCCTCG
 CACGTGGTGGTACAGT...AACATGACTAAA

 TTAGGACCAT
 CACGTGA...ACAATGAGAGCG

 CGCTAGCC
 CACGTTGATCTTGT...AGAATGGCCTAT

 \Rightarrow Pho4 binding

Three Algorithms

- BioProspector
 - Presented in 2000
 - Extends Gibb's sampling (stochastic method)
 - For any cluster of sequences
- MDScan
 - Deterministic approach
 - Enumerative
 - Very fast
 - For sequences with some ranking information
- MotifCut and MotifScan
 - o Graph-based
 - Does not use PSSMs
 - Novel and sensitive

Representing Ambiguous DNA Motifs

• Sequence Patterns (Regular expressions)

Consensus motif:CACAAAADegenerate motif:CRCAAAWA/GA/T

• IUPAC nomenclatures for DNA ambiguities

А	Adenine	С	Cytosine
G	Guanine	Т	Thymine
R (A, G)	puRine	Y (C, T)	pyrimidines
W (A, T)	Weak hydrogen bond	S (C, G)	Strong hydrogen bond
M (A, C)	common aMino group	K (G, T)	common Keto group
B (C, G, T)	not A	D (A, G, T)	not C
H (A, C, T)	not G	V (A, C, G)	not T or U
N (A, C, G, T)	aNy		

Weight Matrix for Transcription Factor Binding Sites

A DNA Motif as a position specific frequency weight matrix

Sites ATGGCATG AGGGTGCG ATCGCATG TTGCCACG ATGGTATT ATTGCACG AGGGCGTT ATGACATG ATGGCATG ACTGGATG

	Freque	ency we	ight Ma	atrix	
Pos	Α	С	G	Т	Con
1	0.9	0	0	0.1	Α
2	0	0.1	0.2	0.7	т
3	0	0.1	0.7	0.2	G
4	0.1	0.1	0.8	0	G
5	0	0.7	0.1	0.2	С
6	0.8	0	0.2	0	Α
7	0	0.3	0	0.7	т
8	0	0	0.8	0.2	G

Weight Matrix with Consensus Sequence & Logotype with Degenerate Consensus

Weight Matrix or Position Specific Scoring Matrix

Positions	А	G	С	Т	Consensus
1	0.05	0.85	0.07	0.03	G
2	0.87	0.05	0.01	0.07	A
3	0.03	0.12	0.7	0.15	С
4	0.1	0.03	0.02	0.85	Т
5	0.6	0.02	0.35	0.03	A
6	0.01	0.03	0.9	0.06	С
7	0.02	0.05	0.9	0.03	С
8	0.8	0.05	0.03	0.12	A

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

BioProspector Iterative Update

Score sequence 1 in all possible alignments

Challenges for BioProspector http://bioprospector.stanford.edu/

- Variable (0-n) motif sites per sequence
- Motif enriched only in upstream sequences, not in the whole genome
- Some motifs could have two conserved blocks separated by a variable length gap
- Motifs are not highly conserved (~50%)
- Some motifs show a palindromic symmetry
- Assign motifs a measure of statistical significance

Thresholds Allow for Variable Motif Copies

- Sequences that do not have the motif
- Sequences with multiple copies of motif

BioProspector Finds Motif With Two Blocks

Two-block motifs:

GACACATTACCTATGC CACAATTACCACCA GCCTCGATTACCGTGGTA TCTCGTTAGATTACCACCCA CGCTAGCCATTACCGAT TGGC CCTACGACCTCTCGC TGGC GTGATCTCAGACACGGACGGC TGGC TAGTTCTCAAACCTGACTAAA TGGC CGTATCGAGAGCG TGGC GTTCTCGAGAATTGCCTAT

BioProspector Finds Motif With Inverse Complementary Blocks

Two-block motifs Palindrome motifs:

BioProspector Results: *B. subtilis* two-block promoter

- *B. subtilis* transcription best studied
- 136 σ^{A} -dependent promoter sequences [-100, 15]
- Look for $w_1 = w_2 = 5$, gap[15, 20] two-block motif
- Correctly identified motif [TTGACA, TATAAT] <
 and 70% of all the sites
- Occasionally predicted two promoters

	"Correct"	site
abrB	TTGACG	
veg	TTGACA	
f105	TTTACA	

Overview BioProspector finds enriched sequence motifs

Motif Finding Search for interesting motifs in your sequences on our server

Input Format How to specify the input parameters

Output Explanations How to understand the output email we send you

Reference Proc Pac Symp Biocomput 2001;:127-38

<u>Contacts</u> People behind the project

See other motif finding algorithms we have developed.

BioProspector

Discovering Conserved DNA Motifs in Upstream Regulatory Regions of Co-Expressed Genes Xiaole Liu, Jun S. Liu, Douglas L. Brutlag Stanford Medical Informatics, Stanford University

The development of high throughput genome sequencing and gene expression techniques gives rise to the demand for data-mining tools. BioProspector, a C program using a Gibbs sampling strategy, examines the upstream region of genes in the same gene expression pattern group and looks for regulatory sequence motifs. BioProspector uses Markov background to model the base dependencies of non-motif bases, which greatly improved the specificity of the reported motifs. The parameters of the Markov background model are either estimated from user-specified sequences or pre-computed from the whole genome sequences. A new motif scoring function is adopted to allow each input sequences to contain zero to multiple copies of the motif. In addition, BioProspector can model gapped motifs and motifs with palindromic patterns, which are prevalent motif patterns in prokaryotes. All these modifications greatly improve the performance of the program. Besides showing preliminary success in finding the binding motifs for *S. cerevisiae* RAP1, *B. subtilis* RNA polymerase, and *E. coli* CRP, we have used BioProspector to find s54 motif from *M. xanthus* genome, many *B. subtilis* motifs from <u>DBTBS</u> collection of promoters, and motifs from <u>yeast expression data</u>.

BioProspector requires the user to specify a motif width. Recently, JS Liu and his student have developed an algorithm <u>BioOptimizer</u> to automatically adjust a user-specified motif width to optimize the motif's information. The program can be downloaded from: <u>http://www.people.fas.harvard.edu/~junliu/BioOptimizer/</u>.

Obtaining a local copy of BioProspector:

BioProspector is free-of-charge to academia. Please check out: <u>Brutlag Bioinformatics Group Software Download</u> and <u>Academic License Instructions</u> for details.

Reference:

Liu X, Brutlag DL, Liu JS. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of coexpressed genes. *Pac Symp Biocomput*. 2001;:127-38.

BioProspector Web Server: http://bioprospector.stanford.edu/

e <u>E</u> dit <u>V</u> iew F <u>a</u> ∨orite	s Iools Help	<u>A</u>
	Please specify your email so we can send the search result to you	
	Input Sequences	
/erview	You can either specify a file Browse Or paste your sequences below:	
otif Finding		
rch for interesting motifs rour sequences on our ver	Motif Model	
out Format w to specify the input rameters	Motif is a one-block rotif	
utput Explanations ow to look at the output file e send you	Width of the second motif block (no need for one block or palindrome motifs) 0 For two-block or two-block palindrome motifs:	
e <u>ference</u> oc Pac Symp Biocomput 01;:127-38	Maximum gap between the blocks (no more than 15 above min gap): 10 Motif occurs in not all input sequences	
ontacts cople behind the project	Background Model	
	You can use the input sequence as background if you don't specify any of the following. Or you can specify a background sequence file	
	Or paste background sequences below	
ggestions, comments, dugs to: <u>zole Išu</u> st updated 2/9/2001.		
	Or use the precomputed genome background model	
	Result Display	
	Report top 3 motifs found. If you want to get the statistical significance of the motifs:	
	Generate sets of data to calculate motif score distribution Or use as the mean and as the standard deviation of the motif score distribution	

D DY

Compare Prospector http://compareprospector.stanford.edu/

Eukaryotic Regulatory Element Conservation Analysis and Identification Using Comparative Genomics

Comparative genomics is a promising approach to the challenging problem of eukaryotic transcription regulatory element identification, since functional non-coding sequences may be conserved across species due to evolutionary constraints. We systematically analyzed known human and *S. cerevisiae* transcription regulatory elements and discovered that known human regulatory elements are more conserved between human and mouse than background sequences. Though known *S. cerevisiae* regulatory elements do not appear to be more conserved by comparison of *S. cerevisiae to S. pombe*, they are more conserved when compared to multiple other yeast genomes (*S. paradoxus, S. mikatae, and S. bayanus*) using multiple sequence alignment.

Based on these analyses, we developed a sequence motif-finding algorithm called CompareProspector, which extends Gibbs sampling by biasing the search in promoter regions conserved across species. Using human-mouse comparison, CompareProspector correctly identified the known motifs for transcription factors Mef2, Myf, Srf, and Sp1 from a set of human muscle-specific genes. It also discovered the NFAT motif from genes upregulated by CD28 stimulation in T cells, which suggests the direct involvement of NFAT in mediating CD28 stimulatory signal. Using *C. elegans-C. briggsae* comparison, CompareProspector found the PHA-4 motif from pharyngeally expressed genes and the UNC-86 motif from genes known to be regulated by UNC-86. CompareProspector outperformed many other computational motif-finding programs tested, demonstrating the power of comparative genomics-based biased sampling in eukaryotic regulatory element identification.

CompareProspector paper in Genome Research

Last updated: 1/3/2004

Suggestions, comments, bugs Yueyi Irene Liu

(Liu Y et al, Nucleic Acids Res 32:W204-7)

Doug Brutlag 2010

Compare Prospector http://compareprospector.stanford.edu/

Compare Prospector

😚 http://compareprospector.stanford.edu/search.html

🕥 🗖 🔾 🔾 😡

SCOPE SCOPE PMI Dental Health Plan priceline forum greencard aerobics peru-visa Yahoo! Group...teers Files

A

U.

+

A

Eukaryotic Regulatory Element Conservation Analysis and Identification Using Comparative Genomics

Home **Compare Prospector Search** Overview Please don't submit more than one job at a time! Inputs Make sure you have received answer from your previous submission before submitting another job. Output User information: Reference Please specify your email so we can send the search result to you (coming soon) Download **Input Sequences:** Supplementary Tables Please specify a file Choose File no file selected BioProspector **Cross-species Conservation:** Search About the Input Percent Identity Values Authors no file selected Choose File high conservation thresold between 0 and 1 0.8 (Liu Y et al, Nucleic Acids Res 32:W204-7)

Doug Brutlag 2010

• Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment

 Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment

Cross link protein-DNA interaction

• Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment

• Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment

PCR amplify and label DNA

• Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment

Hybridize with microarray and measure reading

Chromatin Immune Precipitation

- Chromatin immunoprecipitation + microarray (ChIP-on-chip, ChIP-array, IP) experiment
- Rap1 IP Enriched 727 DNA fragments
 - o 45% are intergenic
 - Average length 1-2 KB
 - Some are false positives
 - Some have multiple Rap1 sites

Useful Insights

- In ChIP-array experiments, highly enriched sequences are usually the real targets
- Transcription factor binding sites occurs more abundantly in these real targets
- Search TF sites from high-confidence sequences first before examine the rest sequences?

Motif Discovery Scan (MDscan)

MDscan Algorithm: Define *m*-matches

For a given *w*-mer and any other random *w*-mer

TGTAACGT

TGTAACGT

AGTAACGT

TGCAACAT

TGACACGG

AATAACAG

8-mer

matched 8
matched 7

matched 6

matched 5

matched 4

m-matches for an 8-mer

Pick a reasonable m, e.g. in yeast

MDscan Algorithm: Scanning sequences with top motifs

• Keep 30-50 top scoring candidate motifs:

MDscan Algorithm: Scanning sequences with top motifs

• Keep 30-50 top scoring candidate motifs:

• Scan the rest of the sequences with the candidate motifs

MDscan Simulation

• Nine motif matrix models with 3 widths and 3 degeneracy

Matifwidth (aansa	ana)	Motif Inform	nation Content ((strength)
With with, (consensus)		S1	S2	S3
W8, (GACTACCA	r)	0.772	0.667	0.551
W12, (GACTACCAT	GGA)	0.654	0.582	0.522
W16, (AGGATCTAATGATCCT)		0.577	0.520	0.461
W8S1 More Conserved	GACTCCC GATTGCC GGCTACC GACTACC GAGTACC GAGTACC GGCTCCC GACTCCC	A T W A A L T A Con	GAC GGG GCT GCT GAC CAG GGC Served GAC GAC	TCCGA TCCAA TCCAA TACCA TACGA TAGCA TGCCG TACCA TCCCG

MDscan Simulation

Each test set:

- 100 sequences of 600 bases from yeast intergenic
- Motif segments generated and inserted according to the following abundance:

		Higher co	onfidence	
Expected copies		Motif more	e abundan	t
of motif segments	A1	A2	A3	A4
Among top 5 sequences	3	2.5	2	1.5
Among middle 35 sequences	1.4	1.1	0.8	0.5
Among last 60 sequences	0.4	0.3	0.2	0.1
Total expected motif segments	88	69	50	31

MDscan Simulation

100 tests for
 3 widths
 3 strengths
 4 abundances

3600 tests

MDscan Simulation

100 tests for
3 widths
3 degeneracy
4 abundance

3 X Consensus

• MDscan speed

14 X BioProspector27 X AlignACE

MDscan Simulation Accuracy w = 8

	250							
	MD	scan	BioPro	spector	Cons	ensus	Align	ACE
100 Tests in	Correct	Avg Rank						
100 16363 m	Found as	of Correct						
×	Top 5	Motif						
W8S1A1	100	1.01	100	1.00	78	1.10	86	1.08
W8S1A2	100	1.01	100	1.00	58	1.34	52	1.08
W8S1A3	89	1.15	95	1.04	32	1.94	10	1.10
W8S1A4	47	1.89	54	1.72	6	2.00	0	N/A
W8S2A1	91	1.05	99	1.01	38	1.16	34	1.03
W8S2A2	88	1.12	91	1.16	22	1.64	6	1.00
W8S2A3	62	1.68	66	1.42	7	2.14	0	N/A
W8S2A4	25	1.92	21	1.62	2	2.50	0	N/A
W8S3A1	82	1.24	84	1.32	10	2.50	3	1.00
W8S3A2	60	1.65	64	1.31	5	1.60	0	N/A
W8S3A3	28	2.07	30	1.90	4	1.50	0	N/A
W8S3A4	6	1.33	5	1.80	1	3.00	0	N/A

MDscan Simulation Accuracy w = 12

	MD	scan	BioPro	spector	Cons	ensus	Aligr	ACE
100 Tests in	Correct	Avg Rank						
100 1e3t3 m	Found as	of Correct						
	Top 5	Motif						
W12S1A1	100	1.00	100	1.00	100	1.00	99	1.00
W12S1A2	100	1.00	100	1.00	98	1.06	97	1.06
W12S1A3	99	1.00	98	1.00	81	1.17	77	1.16
W12S1A4	85	1.07	76	1.18	32	1.56	34	1.24
W12S2A1	100	1.00	100	1.00	95	1.02	99	1.07
W12S2A2	95	1.01	100	1.00	82	1.20	82	1.13
W12S2A3	88	1.05	82	1.05	39	1.56	42	1.21
W12S2A4	62	1.24	29	1.31	14	1.71	6	1.50
W12S3A1	99	1.00	100	1.00	83	1.23	88	1.22
W12S3A2	89	1.02	97	1.04	44	1.43	63	1.27
W12S3A3	70	1.21	73	1.25	15	2.40	17	1.24
W12S3A4	32	1.87	13	1.85	4	3.25	2	1.50

MDscan Simulation Accuracy w = 16

	MD	scan	BioPro	spector	Cons	ensus	Aligr	ACE
100 Tests in	Correct	Avg Rank						
100 гезіз ш	Found as	of Correct						
	Top 5	Motif						
W16S1A1	100	1.00	100	1.00	100	1.00	100	1.00
W16S1A2	100	1.00	100	1.00	100	1.00	94	1.00
W16S1A3	100	1.00	100	1.00	92	1.07	71	1.20
W16S1A4	97	1.00	83	1.06	50	1.44	24	2.04
W16S2A1	100	1.00	100	1.00	99	1.00	96	1.00
W16S2A2	100	1.00	100	1.00	94	1.07	86	1.06
W16S2A3	95	1.00	100	1.02	64	1.09	51	1.76
W16S2A4	91	1.03	68	1.26	24	1.54	22	2.05
W16S3A1	100	1.00	100	1.00	94	1.05	89	1.12
W16S3A2	100	1.05	98	1.00	76	1.24	72	1.54
W16S3A3	92	1.00	86	1.06	40	1.43	35	2.03
W16S3A4	63	1.17	27	1.52	13	1.92	2	2.00

MDscan Biological Tests

Gal4 & Ste12 [Ren *et al. Science* 2000] Gal4: galactose metabolism

Biological test 1 [Ren <i>et al</i> . 2001]	Published motif consensus	MDscan results and ranks
Gal4 (23 sequences)	CGGN ₁₁ CCG [Marmorstein <i>et al</i> . 1992]	 CGG AGCACT CTGGT CCG CGG AGCACT CTGGT CCG CGG AGCACT CTGGGT CCG CGG AGCACT CTGGC CCG CGG AGCACT GTGGT CCG CGG AGCAGT CTGCC CCG CGG AGCACT GTCGC CCG CGG AGCACT GTCGC CCG GG AGCACT GTTGACCG A CGG AGCACT GTCGC CCG 10
Stel2 (26 sequences)	TGAAACA [Dolan <i>et al.</i> 1989]	* TGAAACA 1, 2, 5, 9 AAACCAA 3 * GAAACAA 4 * CTGAAAC 6 * TTGAAAC 7 * TGCAACA 8 AAACCAA 10

MDscan		
• SBF & • SBF:	MDscan Biologi MBF [Iyer <i>et al. Natu</i> Swi4 + Swi6 budding, :	cal Tests <i>re</i> 2001] membrane, cell wall
Biological test 2 [Iyer <i>et al.</i> 2001]	Published motif consensus	MDscan results and ranks
SBF (163 sequences)	CACGAAA [Spellman <i>et al.</i> 1998] CGCGAAAA [Iyer <i>et al.</i> 2001]	GACGCGA 1 AACGCGA 2 # ACGCGTA 3 # GACGCGT 4 * CGCGAAA 5, 8-10 * ACGCGAA 6 # CGCGTAA 7
MBF (87 sequences)	ACGCGT [Spellman <i>et al.</i> 1998]	* AACGCG 1 * ACGCGT 2-5,8 * GACGCG 4,7 ACACAC 6 ACCTAC 9 GGGTAA 10
SBF (120 SBF-non-MBF sequences)	CACGAAA CGCGAAAA	TACGCGA 1 * CGCGAAA 2-4, 6, 7, 9, 10 * TCGCGAA 5 * ACGCGAA 8
MBF (44 MBF-non-SBF sequences)	ACGCGT	* ACGCGT 1, 2, 4-6, 8 * AACGCG 3, 7, 9, 10

MDscan Biological Tests

• Rap1 [Lieb et al. Nature Genetics 2001]

Biological test 3 [Lieb <i>et al.</i> 2001]	Published motif consensus	MDscan results and ranks
Rapl (727 sequences)	Same as below	* CACACACACACAC 1-10
Rap1 (719 sequence, excluding the 8 sequences with CA repeats)	RTRCACCCANNCMCC [Graham & Chambers 1994] WACAYCCRTACATY [Lascaris <i>et al.</i> 1999] RMAYCCRMNCAYY [Buchman <i>et al.</i> 1988] RMACCCANNCAYY [Buchman <i>et al.</i> 1988] ACACCCAYACAYYY [Idrissi & Pina 1999]	~ GGCACTTGCATCA 1,3 * ACCCATATCTCAC 5 * ACCCATACCTCAC 6 ^ ACCCTTACACTAC 2 ^ ACCTTACCCTACC 4,10 ^ ACTTACCCTACCA 7 ^ CTTACCCTACCAC 8 ^ CTTACCCTACCCTACC 9
Rapl (577 non-telomere sequences, excluding the 3 sequences with CA repeats)	Same as above	* ACACCCATACATC1-3,7* GACACCCATACAT4-6* TACACCCATACAT8* CACCCATACATCT9,10
Rapl (142 telomere sequences, excluding the 5 sequences with CA repeats)	Same as above	 TGCACTTGCATCA GGCACTTGCCTCA GCACTTGCCTCAG ACTTACCCTACC AACTTACCCTACC ACTTACCCTACCA 8 CTTACCCTACCAT 7,9

TAMO: Tools for the Analysis of Motifs <u>http://fraenkel.mit.edu/TAMO/</u>

010

WebMotifs http://fraenkel.mit.edu/webmotifs/

The Fraenkel Lab

Biological MIT Engineering

Overview Input MD programs Scoring Int. Output Clustering Output Try it!

Downloads

WebMOTIFS is an online tool for motif discovery, scoring, analysis, and visualization. It allows you to use different programs to search for DNA-sequence motifs, and to easily combine and evaluate the results.

WebMOTIFS is a combination of two tools, TAMO and THEME. TAMO runs a number of motif discovery programs on input sequences, then combines, analyzes, and clusters the results. TAMO incorporates the motif discovery programs AlignACE, MDscan, MEME, and Weeder. We gratefully acknowledge the authors of these programs. THEME does Bayesian motif analysis, incorporating prior knowledge about likely motifs. The graphic below explained the basic motif discovery and post-processing offered by WebMOTIFS; you can run Bayesian motif discovery on your input list of coregulated genes as well.

Please note that users of WebMOTIFS may be bound by copyrights and user agreements of AlignACE, MDscan, MEME, and Weeder. See here for details.

Draft paper on WebMOTIFS, submitted to NAR web server issue (PDF)

Try out WebMOTIFS!

WebMotifs http://fraenkel.mit.edu/webmotifs/

MELINA

Melina: Comparing Motifs <u>http://melina1.hgc.jp/</u>

Query Parameter	Result	About ? AboutUs ? Help → OldVer.
QuerySequence sample	melinaI	Human Genome Center
QueryFile Description Description Files Job ID Result Method Param ResetAll CONSENSUS	Melina	We introduce here a novel Analyzer, called Melina, whose main purpose is to elucidate effectively consensus motif in a set promoters of co-regulated genes. Four progressive motif extraction programs are included and offered for simultaneous usage in Melina, and their results can be observed and compared at a glance from the graphical output, called "Comparison map", from the text format file "Motif Table Page" and in a raw data format. Only run and compare! All of the involved programs elucidate the consensus motif without any a priori knowledge about its characteristics, although the motif length is presumed. We insist that it is possible to make these algorithms more sensitive to the solution of various elucidation tasks in the range of biologically possible, such as, for example, elucidation of single conserved motif or multiple corrupted motifs, if apply the appropriate parameters combinations. As the output results are strongly dependent on the parameter set used, we carefully describe each parameters and its role in the algorithm. Also we give here some samples of different usage of parameters depending on the elucidation task. In the case only one program is chosen from Melina, you can concomitantly apply 5 datasets and compare the results at a glance. Here you will find a very friendly tutorial, which will teach you how to input a sequences set into the Melina web page, choose the appropriate parameters, and examine the results. Good luck to you!
Gibbs		STEP1 STEP2 STEP3
MDscan		Query
submit		Select the Tool, Choose the Appropriate Interpret the Results Input and Submit the Dataset Parameters Interpret the Results

IELINA	Melin <u>k</u>	na: Co http://1	ompar melina1.	ing Mo <u>hgc.jp/</u>	otifs	
Query Parameter	Result	About	? AboutUs ? Help	\rightarrow OldVer. Job	ID: 200601041052_0	852 MQ
1 CONSENSUS Param	Grid spacing	Zoom ir	n/out	Horizontal slide)	Fi)
found 4 motif Raw	SEQ2;)	50	100	150	200
_	1.CONSENSUS					
2 MEME Param	2.MEME				 >	
	3.Gibbs					
found 1 motif 🔝	4.MDscan				· · · · · · · · · · · · · · · · · · ·	
and the second s	SEQ3;)	50	100	150	200
🔄 3 Gibbs Param	1.CONSENSUS			i i i i i i i i i i i i i i i i i i i 		
	2.MEME					
found 1 motif 🔝	3.Gibbs					
	4.MDscan	94 - 1972,027 (94 - 1972),027 (94 - 1972),		(ini)		
🔲 4 MDscan 🛛 Param	SEQ4;	0	50	100	150	200
	1.CONSENSUS					
found 5 motif 🖬	2.MEME					.
	3.Gibbs					-
submit	4.MDscan					
	SEQ5;)	50	100	150	200
	1.CONSENSUS					
	2.MEME					
	3.Gibbs					
	4.MDscan			1000.004	()	
	SEQ6;)	50	100	150	200
	1.CONSENSUS					
	2.MEME					
	3.Gibbs					
	4.MDscan			·)		
	SEQ7;)	50	100	150	200

Summary

- BioProspector is stochastic
- BioProspector can get trapped in local maxima
- BioProspector must be run multiple times to discover the true globally optimal motif
- BioProspector is slow
- MDScan is deterministic
- MDScan always gives the same answer with the same data
- MDScan is fast
- MDScan uses rank order data to accelerate the search process and to allow it to be deterministic
- MDScan is fast enough to search intergenic regions from entire genomes.

MDScan is not as sensitive as BioProspector

Graph-Based Methods for Representing DNA Regulatory Sites

[1]Naughton, B., E. Fratkin, S. Batzoglou and D. L. Brutlag. 2006. MotifScan - A non-Parametric Algorithm for DNA motif detection. Nucleic Acids Res 34:5730-5739.

[2]Fratkin, E., B. Naughton, D. L. Brutlag and S. Batzoglou. 2006. MotifCut: An Algorithm for Finding Regulatory Motifs. Bioinformatics:150-157.

[3]Naughton, B. SEQUENCE ANALYSIS METHODS FOR THE DETECTION OF PROMOTERS AND TRANSCRIPTION FACTOR BINDING SITES, Thesis, Biomedical Informatics Stanford University. 2006, 142 Pages.

Problems with Current Representations of DNA Motifs

- All current methods for representing DNA motifs involve either consensus sequences or probabilistic models (such as PSSMs) of the motif.
- Consensus sequences do not adequately represent the variability seen in promoters or transcription factor binding sites.
- Both consensus sequences and PSSM models assume positional independence. Neither method can accommodate correlations between positions.
- Probabilities calculated from PSSM models can be highly misleading.

Parametric methods: a PSSM

Parametric methods: a PSSM

$$P(AAA) = 1 * 0.67 * 0.67 = 0.44$$
$$P(AGG) = 1 * 0.33 * 0.33 = 0.11$$
$$P(AAG) = 1 * 0.67 * 0.33 = 0.22$$

Yeast motifs

We analyzed yeast motifs for pairwise dependencies. We used a chi-square statistic to find whether two positions were correlated or not.

We found that **25%** of motifs have significantly correlated positions.

ACACC ACACC ACACC AGATC AGATC AGATC

A Graph-Based Model of a Motif

Motif Representations

How Well Does a PSSM Model the Motif?

PSSM Scores

More complex models

- **Barash et al.** developed a Bayesian network model. They investigated mixtures of PSSMs, tree Bayesian networks and mixtures of trees.
- **Zhou and Liu** developed a PSSM that includes pairs of correlated positions.
- **King and Roth** developed a PSSM-based non-parametric method. Their model interpolated between a PSSM based on all members of the motif, and a mixture model, with one PSSM for each member of the motif.

A Mixture of PSSMs

One PSSM Per Example

Some Yeast Motifs

Some Eukaryotic Motifs JASPAR motifs

MotifCut

MotifCut Performance

66

58

MEME

MotifCut Performance

	AlignAce	BioProspector	MEME
MotifCut	0.14	0.10	0.12
MEME	0.20	0.31	
BioProspector	0.24		

A log-odds measure of similarity of motifs found by different algorithms

MotifCut

- Advantages:
 - Performance
 - Low correlation with present methods
 - Deterministic
 - Not alignment-based
 - Good for comparative genomics

Receiver-Operator Characteristic Curves

Mo/

MotifScan Results Yeast motifs JASPAR motifs

90-100% 80-90% 60-80% 40-60% 20-40% 0-20%

ifScan > PSSM+ 5%		Area under ROC curve		
Motif Name	# k- mers	MotifScan	PSSM	
ADR1	29	100%	49%	
CAD1	22	78%	67%	
CIN 5	135	100%	84%	
FKH1	154	100%	90%	
GCN4	177	100%	82%	
GLN3	79	98%	79%	
HAP4	37	90%	82%	
MSN2	32	72%	60%	
MSN4	37	100%	73%	
PHD1	116	100%	62%	
RAP1	112	89%	76%	
RCS1	59	90%	75%	
RDS1	10	100%	88%	
RFX1	11	93%	84%	
ROX1	28	99%	82%	
SKN7	125	91%	22%	
SOK2	184	100%	65%	
SPT2	13	65%	56%	
SPT23	53	100%	83%	
SUT 1	42	31%	22%	
SW14	128	100%	90%	
SWI6	179	100%	81%	
TEC1	96	100%	92%	
UME6	88	95%	88%	
YAP7	91	90%	62%	

MotifScan > PSSM+	10%	ROC curve		
Motif Name	# k- mers	MotifScan	PSSM	
MA0001	97	86%	58%	
MA0002	29	88%	67%	
MA0005	90	54%	33%	
MA0006	-24	100%	80%	
MA0008	25	100%	7.8%	
MA0011	12	100%	26%	
MA0014	12	22%	7%	
MA0015	80	82%	66%	
MA0020	21	100%	86%	
MA0031	20	100%	65%	
MA0034	25	29%	12%	
MA0037	63	100%	65%	
MA0038	53	66%	37%	
MA0040	18	72%	60%	
MA0041	47	77%	61%	
MA0044	13	50%	5%	
MA0054	70	100%	55%	
MA0056	20	100%	79%	
MA0057	16	36%	22%	
MA0063	17	100%	48%	
MA0067	31	95%	25%	
MA0070	18	67%	53%	
MA0077	76	93%	63%	
MA0080	57	100%	65%	
MA0081	49	100%	70%	
MA0084	28	73%	39%	
MA0086	40	100%	83%	
MA0087	23	100%	78%	
MA0089	34	100%	87%	
MA0092	29	67%	35%	
MA0095	17	100%	86%	
MA0098	40	100%	82%	
MA0103	41	100%	69%	
MA0105	18	74%	60%	

PSSM > MotifScan + 10%

Motif Name

MA0007

MA0018

MA0024 MA0045 # k-

24

16

Moti

Area under

34 motifs

PSSM	l > MotifScan	+ 5%	Area under ROC curve	
	Motif Name	# k- mers	MotifScan	PSSM
	ABF1	29	79%	85%

26 motifs

	PSSM	fScan
	59%	48%
4 motife	31%	18%
	92%	79%
	15%	4%

Area under

ROC curve

Conclusion

- MotifScan uses a graph-based model of transcription factor binding sites, which retains all the known motif instances.
- This model works significantly better than a PSSM.

Conclusions

- Our graph-based methods perform better than the current methods.
- They make fewer assumptions about the distribution of k-mers in the motif.
- They deal naturally with k-mer clustering.
- They represent positional correlations implicitly