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Motivation"

Searching for conserved sequence"
motifs regulating the expression"

MicroArray analysis of "
whole genome gene expression"

Clustering of genes based on "
their expression pattern"



Megacluster of Yeast Gene Expression"
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Human Gene Expression Signatures"



  Upstream Regions     Co-expressed 
       Genes 

    GATGGCTGCACCACGTGTATGC...ACGATGTCTCGC 
    CACATCGCATCACGTGACCAGT...GACATGGACGGC 
    GCCTCGCACGTGGTGGTACAGT...AACATGACTAAA 
    TCTCGTTAGGACCATCACGTGA...ACAATGAGAGCG 
    CGCTAGCCCACGTGGATCTTGA...AGAATGACTGGC  

Finding Transcription Factor Binding Sites "
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  Upstream Regions     Co-expressed 
       Genes 

    GATGGCTGCACCACGTGTATGC...ACGATGTCTCGC 
    CACATCGCATCACGTGACCAGT...GACATGGACGGC 
    GCCTCGCACGTGGTGGTACAGT...AACATGACTAAA 
    TCTCGTTAGGACCATCACGTGA...ACAATGAGAGCG 
    CGCTAGCCCACGTGGATCTTGT...AGAATGGCCTAT 

Finding Transcription Factor Binding Sites"



  Upstream Regions     Co-expressed 
       Genes 

     ATGGCTGCACCACGTTTATGC...ACGATGTCTCGC 
     CACATCGCATCACGTGACCAGT...GACATGGACGGC 
         GCCTCGCACGTGGTGGTACAGT...AACATGACTAAA 
     TTAGGACCATCACGTGA...ACAATGAGAGCG 
       CGCTAGCCCACGTTGATCTTGT...AGAATGGCCTAT 

Pho4 binding 

Finding Transcription Factor Binding Sites"



Three Algorithms"

•  BioProspector"
o  Presented in 2000"
o  Extends Gibb’s sampling (stochastic method)"
o  For any cluster of sequences"

•  MDScan"
o  Deterministic approach"
o  Enumerative"
o  Very fast"
o  For sequences with some ranking information"

•  MotifCut and MotifScan"
o  Graph-based"
o  Does not use PSSMs"
o  Novel and sensitive"



Representing Ambiguous DNA Motifs"

•  Sequence Patterns (Regular expressions)"

•  IUPAC nomenclatures for DNA ambiguities"

Consensus motif:  CACAAAA 
Degenerate motif:  CRCAAAW 

A/T A/G 



Weight Matrix for !
Transcription Factor Binding Sites"

A DNA Motif as a position specific frequency weight matrix"

Sites 
ATGGCATG 
AGGGTGCG 
ATCGCATG 
TTGCCACG 
ATGGTATT 
ATTGCACG 
AGGGCGTT 
ATGACATG 
ATGGCATG 
ACTGGATG 

Pos A C G T
1 9 0 0 1
2 0 1 2 7
3 0 1 7 2
4 1 1 8 0
5 0 7 1 2
6 8 0 2 0
7 0 3 0 7
8 0 0 8 2

Alignment Matrix Frequency weight Matrix 
Pos A C G T Con
1 0.9 0 0 0.1 A
2 0 0.1 0.2 0.7 T
3 0 0.1 0.7 0.2 G
4 0.1 0.1 0.8 0 G
5 0 0.7 0.1 0.2 C
6 0.8 0 0.2 0 A
7 0 0.3 0 0.7 T
8 0 0 0.8 0.2 G



Weight Matrix with Consensus Sequence & 
Logotype with Degenerate Consensus "

TTWHYCGGHY 

Weight Matrix or Position Specific Scoring Matrix 



BioProspector Initialization"

Gather together upstream regulatory regions 



BioProspector Initialization"
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a3 
a4 

ak 

Actual Location of Regulatory Motifs is Unknown 



BioProspector Initialization"

Initial Motif 

Randomly initialize the beginning motif 
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BioProspector Iterative Update"

Take out one sequence at a time with its segment 
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BioProspector Iterative Update"
Score each segment with the current motif 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (3-8): 2.7 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (4-9): 9.0 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (5-10): 3.2 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (6-11): 27.1 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (7-12): 11.2 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (8-13): 2.9 

Segment Scores of Sequence 1

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Starting Position of Segment

Se
gm

en
t 

Sc
or

e

Sequence 1 

BioProspector Iterative Update"
Score each segment with the current motif 
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Segment (9-14): 9.1 
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BioProspector Iterative Update"
Score each segment with the current motif 
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Candidate Motif 

BioProspector Iterative Update"
Score sequence 1 in all possible alignments 
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BioProspector Iterative Update"
Repeat the process until convergence 

Motif Without 
a2' Segment 



Challenges for BioProspector!
 http://bioprospector.stanford.edu/"

•  Variable (0-n) motif sites per sequence"
•  Motif enriched only in upstream sequences, not 

in the whole genome "
•  Some motifs could have two conserved blocks 

separated by a variable length gap"
•  Motifs are not highly conserved (~50%)"
•  Some motifs show a palindromic symmetry"
•  Assign motifs a measure of statistical 

significance "



Thresholds Allow for!
Variable Motif Copies"

•  Sequences that do not have the motif"
•  Sequences with multiple copies of motif"

Sampling with Two Threshold
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BioProspector Finds Motif With Two Blocks"

Two-block motifs:"
     GACACATTACCTATGC  TGGCCCTACGACCTCTCGC 

     CACAATTACCACCA   TGGCGTGATCTCAGACACGGACGGC 

   GCCTCGATTACCGTGGTA TGGCTAGTTCTCAAACCTGACTAAA 
TCTCGTTAGATTACCACCCA  TGGCCGTATCGAGAGCG 

 CGCTAGCCATTACCGAT    TGGCGTTCTCGAGAATTGCCTAT 



BioProspector Finds Motifs!
With Two Blocks"

Two-block motifs"

Sequence 
Min Gap 

Max Gap 

blk1 block2 
22.4 
26.5 
30.1 
18.9 

97.9 

Sample  
Block2 start 



BioProspector Finds Motif With !
Inverse Complementary Blocks"

Two-block motifs"
"Palindrome motifs:	


AATGCG 
GCGTAA 



•  B. subtilis transcription best studied"
•  136 σA-dependent promoter sequences [-100, 15]"
•  Look for w1 = w2 = 5, gap[15, 20] two-block motif"
•  Correctly identified motif [TTGACA, TATAAT]"
"and 70% of all the sites"

•  Occasionally predicted two promoters"

BioProspector Results:!
B. subtilis two-block promoter"



BioProspector Web Server:!
http://bioprospector.stanford.edu/"



BioProspector Web Server:!
http://bioprospector.stanford.edu/"



Compare Prospector!
http://compareprospector.stanford.edu/"

Liu et al, 2004, Genome Res 14(3): 451-458.  



Compare Prospector!
http://compareprospector.stanford.edu/"

1 kb	


Liu et al, 2004, Genome Res 14(3): 451-458 

Regions conserved between  
two species 

Motif 



Compare Prospector!
http://compareprospector.stanford.edu/"

Gene 1 

Gene 2 

Gene 3 

Gene 4 

Gene 5 

Gene n 

Biased sampling: 	


Initial iterations: Tch 	


Later iterations: Tcl	


Tch	


Tch	


Tcl	


Tcl	


Liu et al, 2004, Genome Res 14(3): 451-8,  



Compare Prospector!
http://compareprospector.stanford.edu/"

(Liu Y et al, Nucleic Acids Res 32:W204-7)	




Compare Prospector!
http://compareprospector.stanford.edu/"

(Liu Y et al, Nucleic Acids Res 32:W204-7)	




Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Cross link protein-
DNA interaction 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Cross link 
protein-DNA 
interaction 
Shear DNA 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Immunoprecipitation 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



PCR amplify 
and label 
DNA 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Hybridize with 
microarray and measure 
reading 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Cross link protein-
DNA interaction 
Shear DNA 
Immunoprecipitation 

Purify DNA Purify DNA 
PCR amplify 
and label DNA 
Hybridize with microarray 
and measure reading 

Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + microarray 
(ChIP-on-chip, ChIP-array, IP) experiment"



Chromatin Immune Precipitation"



Yeast Rap1 Sequences"

•  Chromatin immunoprecipitation + 
microarray (ChIP-on-chip, ChIP-array, IP) 
experiment"

•  Rap1 IP Enriched 727 DNA fragments"
o  45% are intergenic"
o  Average length 1-2 KB"
o  Some are false positives"
o  Some have multiple Rap1 sites"



Useful Insights"

•  In ChIP-array experiments, highly enriched 
sequences are usually the real targets"

•  Transcription factor binding sites occurs more 
abundantly in these real targets"

•  Search TF sites from high-confidence sequences 
first before examine the rest sequences?"

Motif Discovery Scan (MDscan) 



MDscan Algorithm:!
Define m-matches"

For a given w-mer and any other random w-mer"
 TGTAACGT  8-mer 

 TGTAACGT  matched 8 

 AGTAACGT  matched 7 
 TGCAACAT  matched 6 

 TGACACGG  matched 5 

 AATAACAG  matched 4 

m-matches for 
an 8-mer 

Pick a reasonable m, e.g. in yeast 



MDscan Algorithm:!
Finding candidate motifs"

Top 
Seqs 

Seed 1"

All IP enriched sequences 

m-matches 



MDscan Algorithm:!
Finding candidate motifs"

Top 
Seqs 

Seed 2"

All IP enriched sequences 

m-matches 



MDscan Algorithm:!
Finding candidate motifs"

Top 
Seqs 

Seed 3"

All IP enriched sequences 

m-matches 



MDscan Algorithm:!
Scanning sequences with top motifs"

•  Keep 30-50 top scoring candidate motifs:"

Motif Signal  
Abundance 

Conserved 
Positions 

Specificity 
(unlikely in genome) 



MDscan Algorithm:!
Scanning sequences with top motifs"

•  Keep 30-50 top scoring candidate motifs:"

•  Scan the rest of the  sequences with the candidate motifs"

Motif Signal  
Abundance 

Conserved 
Positions 

Specificity 
(unlikely in genome) 



MDscan Algorithm:!
Finding All Motif Instances"

Top 
Seqs 

Seed 3"

All IP enriched sequences 

m-matches 



MDscan Algorithm:!
Refine the motifs"

Top 
Seqs 

Seed 3"

All IP enriched sequences 

m-matches 

X 

X 

X 



MDscan Simulation"

• Nine motif matrix models with 3 
widths and 3 degeneracy"

GACTCCCA 
GATTGCCT 
GGCTACCT 
GACTACCA 
GAGTACCA 
GACTATCT 
GAGTACCA 
GGCTCCCA 
GACTCCCA 

W8S1 
More 

Conserved 

W8S3 
Less 

Conserved 

GACTCCGA 
GGGAACCA 
GCTTCCAA 
GACTACCA 
CAGTACGA 
GGCTAGCA 
GACTGCCG 
GACTACCA 
GACTCCCG 



MDscan Simulation"

Each test set:"
•  100 sequences of 600 bases from yeast 

intergenic "
•  Motif segments generated and inserted 

according to the following abundance: "

Higher confidence 
Motif more abundant 



MDscan Simulation"

•  100 tests for "
" "3 widths"
" "3 strengths"
" "4 abundances "

3600 tests 



MDscan Simulation"

•  100 tests for "
" "3 widths"
" "3 degeneracy"
" "4 abundance "

" " " " "3 X " Consensus"
•  MDscan speed " "14 X " BioProspector"
" " " " "27 X "AlignACE"

3600 tests 



MDscan Simulation Accuracy !
w = 8"



MDscan Simulation Accuracy !
w = 12"



MDscan Simulation Accuracy !
w = 16"



MDscan Biological Tests"

•  Gal4 & Ste12 [Ren et al. Science 2000]!
o  Gal4: galactose metabolism"
o  Ste12: responds to mating pheromones"



MDscan Biological Tests"

•  SBF & MBF [Iyer et al. Nature 2001]"
o  SBF: Swi4 + Swi6  budding, membrane, cell wall 

biosynthesis"
o  MBF: Mbp1 + Swi6  DNA replication and repair"



MDscan Biological Tests"

•  Rap1 [Lieb et al. Nature Genetics 2001]"
o  Repressor activator"
o  37% pol II events in exponentially growing cells"



TAMO: Tools for the Analysis of Motifs!
http://fraenkel.mit.edu/TAMO/"



WebMotifs!
http://fraenkel.mit.edu/webmotifs/"



WebMotifs!
http://fraenkel.mit.edu/webmotifs/"



Melina: Comparing Motifs!
http://melina1.hgc.jp/"



Melina: Comparing Motifs!
http://melina1.hgc.jp/"



Single Microarray Determination of  
Transcription Factor  Motifs"

One microarray experiment, no clustering 
needed"

" " ""
" " "Basic idea: more affected"
" " "sequences may contain more"
" " "motif TF sites"

Ex
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 lo

g 
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tio
 

Genes 

Induced 

Repressed 



Summary"

•  BioProspector is stochastic"
•  BioProspector can get trapped in local maxima"
•  BioProspector must be run multiple times to 

discover the true globally optimal motif"
•  BioProspector is slow"
•  MDScan is deterministic"
•  MDScan always gives the same answer with the 

same data"
•  MDScan is fast"
•  MDScan uses rank order data to accelerate the 

search process and to allow it to be deterministic"
•  MDScan is fast enough to search intergenic regions 

from entire genomes."
•  MDScan is not as sensitive as BioProspector"



Graph-Based Methods for 
Representing DNA Regulatory Sites 

[1]Naughton, B., E. Fratkin, S. Batzoglou and D. L. Brutlag. 2006. 
MotifScan - A non-Parametric Algorithm for DNA motif detection. 
Nucleic Acids Res 34:5730-5739.	

[2]Fratkin, E., B. Naughton, D. L. Brutlag and S. Batzoglou. 2006. 
MotifCut: An Algorithm for Finding Regulatory Motifs. 
Bioinformatics:150-157.	

[3]Naughton, B. SEQUENCE ANALYSIS METHODS FOR THE DETECTION OF 
PROMOTERS AND TRANSCRIPTION FACTOR BINDING SITES, Thesis, 
Biomedical Informatics Stanford  University. 2006, 142 Pages.	



Problems with Current 
Representations of DNA Motifs 
•  All current methods for representing DNA motifs involve 

either consensus sequences or probabilistic models (such as 
PSSMs) of the motif. 

•  Consensus sequences do not adequately represent the 
variability seen in promoters or transcription factor binding 
sites. 

•  Both consensus sequences and PSSM models assume 
positional independence. Neither method can accommodate 
correlations  between positions. 

•  Probabilities calculated from PSSM models can be highly 
misleading.  



Parametric methods: a PSSM 



Parametric methods: a PSSM 



Yeast motifs 

We analyzed yeast motifs for 
pairwise dependencies. We 
used a chi-square statistic to 
find whether two positions 
were correlated or not. 

We found that 25% of motifs 
have significantly correlated 
positions. 
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A Graph-Based Model of a Motif 
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Motif Representations 
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How Well Does a PSSM Model 
the Motif? 



PSSM Scores 



More complex models 

•  Barash et al. developed a Bayesian network model. They 
investigated mixtures of PSSMs, tree Bayesian networks and 
mixtures of trees.  

•  Zhou and Liu developed a PSSM that includes pairs of 
correlated positions. 

•  King and Roth developed a PSSM-based non-parametric 
method. Their model interpolated between a PSSM based on 
all members of the motif, and a mixture model, with one 
PSSM for each member of the motif. 



A Mixture of PSSMs 



One PSSM Per Example 



Graph Representation 



Some Yeast Motifs 



Some Eukaryotic Motifs 



MotifCut 

ACGGT	


CGGTA	


GGTAC	


GTACT	


TACTC	




MotifCut 



Maximum Density Subgraph 

4 vertices	

6 edges	
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MotifCut Performance 

Synthetic data	
 Yeast data	


MotifCut	
 AlignAce	
 BioProspector	
 MEME	




MotifCut Performance 

AlignAce BioProspector MEME 

MotifCut 0.14 0.10 0.12 

MEME 0.20 0.31 

BioProspector 0.24 

A log-odds measure of similarity of motifs found by 
different algorithms	




MotifCut 

• Advantages: 
– Performance 
– Low correlation with present methods 
– Deterministic 
– Not alignment-based 
– Good for comparative genomics 



Motif scanning 

ACCCCTGATGATAAAGATGATGATGA
T Motif	


Maximum likelihood position 



Motif Scanning with MotifScan 



MotifScan p-values 

AAA	




Receiver-Operator 
Characteristic Curves 

Area Under the Curve 	

(AUC)	




MotifScan Results 

26 motifs 	

34 motifs 	


4 motifs 	
1 motif	




Conclusion 

• MotifScan uses a graph-based 
model of transcription factor 
binding sites, which retains all 
the known motif instances.  
• This model works significantly 

better than a PSSM. 



Conclusions 
• Our graph-based methods 

perform better than the current 
methods.  
• They make fewer assumptions 

about the distribution of k-mers in 
the motif.  
• They deal naturally with k-mer 

clustering. 
• They represent positional 

correlations implicitly  


