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1 Introduction

In a 1998 paper, Spellman et. al. (1991) attempted to create “a comprehen-
sive catalog of yeast genes whose transcript levels vary periodically within the
cell cycle.” To identify these genes, they grew several cultures of yeast under
various experimental conditions. They used DNA microarrays to measure the
expression levels of 6187 known or predicted genes. After the data was collected,
they used a periodicity and correlation algorithm to identify cell cycle-regulated
genes.

Although Spellman et. al.’s paper represented an important advance in this
area, I feel that their methodology is subject to criticism. I will discuss several
criticisms of their method, and I will describe a new method to address these
criticisms.

2 Description of the Problem

We hope to discover yeast genes whose expression level varies periodically within
the cell cycle. Such genes should be overexpressed at certain times during
the cell cycle and underexpressed at other times. Moreover, when we plot the
expression level of the gene versus time, we would expect the plot to have a
sinusoidal pattern. Figure 1 is a plot of the expression level of the rfal gene
versus time. Brill and Stillman (1991) have shown that the rfal gene is cell
cycle regulated through traditional methods. Note the sinusoidal pattern in the
data. Compare this expression pattern with the expression pattern of the efb1
gene, shown in Figure 2. This gene is not known to be cell cycle-regulated,
and we observe that there is little or no indication of a sinusoidal pattern in
the expression data. The problem is therefore to distinguish between these two
expression patterns.
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Figure 1: Expression profile of the rfal gene
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Figure 2: Expression profile of the efb1 gene



3 Spellman et. al.’s Method

The following is Spellman et. al.’s description of their method for identifying
cell cycle-regulated genes: “Data for each gene in the a factor time series were
extracted from the database and were normalized so that the average log, (ratio)
over the course of the experiments was equal to 0. A Fourier transform (see (1)
and (2)) was applied to the data series for each gene, and the resulting vector
(C) was stored for each gene, where w is the period of the cell cycle, t is the
time, ® is the phase offset, and ratio(t) is the ratio measurement at time t. We
found that the magnitude of the Fourier transform (4) was unstable for small
variations of w, so we averaged the vectors of the transform over a range of 40
values, which were evenly spaced around the estimated division time for the
experiment (66 + 11). We initially set the value of ® to 0.

A= "sin(wt + @) log, (ratio(t)) (1)
A="cos(wt + ®)log, (ratio(t)) (2)
C = (A, B) ®3)

D =/42 + B? (4)

“The expression profile of each gene across the experiments was then correlated
to five different profiles representing genes known to be expressed in G1, S, G2,
M, and M/G1 using a standard Pearson correlation function. The profiles for
known gene classes were identified by averaging the log,(ratio) data for each of
the genes known to peak in each of the five time periods. The peak correlation
score was defined as the highest correlation value between the data series for
each gene and each of the profiles. The vector calculated by the Fourier trans-
form was scaled by the peak correlation value.

“The above process was repeated for the cdc15 experiment (w varying be-
tween 60 and 80) and for the cdc28 data (w varying between 80 and 100) from
Cho et. al. (1998). The cdc28 data set was first converted to ratio style
measurements by dividing each measurement by the average value of the mea-
surements for that gene. Before this step it was necessary to exclude some data
points that appeared to be aberrant. Any data value where the two values on
either side were threefold different in the same direction were excluded. Each
gene thus had three vector scores (one for each of the three analyzed data series).

“To generate a single vector for each gene, we added the vectors for each ex-
periment together. However, the value of ® for the three experiments should not
be the same, because the experiments start at different points in the cell cycle.
Therefore, before combining the vectors for the three experiments, constants



dcdcld and Pcde28 (relative to the a factor experiment), were calculated for
the cdc15 and cdc28 experiments, respectively, that maximized, for the known
genes, the average magnitude of the summed vectors. The elutriation data were
not included, because it was not possible to calculate a ¢ that maximized the
values of more than a handful of the known genes. The a factor and cdclb
vectors were multiplied by 0.7, so that they would not unduly contribute to the
final ’aggregate CDC score,” which was calculated by taking the magnitude of
this final vector.

“Genes were ranked by their aggregate CDC scores, and the list was exam-
ined to identify the positions of known cell cycle genes within it. We selected
a threshold CDC score that was exceeded by 91% of known cell cycle-regulated
genes. Altogether 800 genes met or exceeded this CDC score.”

4 Criticisms of Spellman et. al.’s Method

Spellman et. al.’s methodology represents an important first step in the search
for cell cycle-regulated genes. However, their method is subject to criticism on
several grounds. First, their algorithm is difficult or impossible to reproduce.
The descriptions of many of the steps of their algorithm are vague. For example,
they state that “...constants, ®cdclb and ®cdc28 were calculated for the cdc15
and cdc28 experiments, respectively, that maximized, for the known genes, the
average magnitude of the summed vectors.” However, they do not describe how
these constants were determined. And although their raw data is available on
the Internet, the source code for their algorithm is not. Without a detailed
description of the gene-finding algorithm and without the source code, their
results would be difficult to reproduce. This could be problematic if someone
wanted to repeat the experiment, or if someone wanted to use their method to
identify cell cycle-regulated genes in a different organism.

Second, there is no rigorous mathematical or biological justification for their
algorithm. Intuitively, one would expect that a cell cycle-regulated gene should
have larger Fourier coefficients and be correlated with known cell cycle-regulated
genes. However, there is no guarantee that this will be the case. In particular,
one can imagine a gene that is cell cycle-regulated, but whose mRNA transcript
levels show only small variation with respect to time. The Fourier coefficients
associated with such a gene would probably be small because the correspond-
ing expression levels are small, in spite of the fact that the expression level is
periodic with respect to time. Such a gene may be misclassified using Spellman
et. al.’s method.

Furthermore, Spellman et. al. applied their method to 104 yeast genes that
are already known to be cell cycle regulated. They calculated the “CDC score”
for each of these 104 genes, and took the 10th percentile of these scores to
be their significance threshold. Although this idea seems reasonable, it makes



it difficult to verify that the algorithm is producing meaningful results. Any
reasonable algorithm should correctly identify a high percentage of these genes
as cell cycle-regulated. If an algorithm fails to do so, we would conclude that
the algorithm is fatally flawed. However, if one applies an arbitrary procedure
to these 104 genes and chooses a certain percentile of the output to be the
significance threshold, the procedure will always identify a fixed percentage of
these genes as cell cycle regulated, even if the algorithm is complete nonsense.
For example, if T simply assigned a random number to each gene, and chose the
10th percentile of these random numbers as my threshold, I would still correctly
identify 90% of these genes as cell cycle-regulated!

Finally, even if Spellman et. al.’s method is completely valid, it is difficult to
quantify the uncertainty in the results. Spellman et. al. attempted to estimate
the global false positive rate for their method by permuting the expression data
for each gene. Presumably, this would destroy any periodicity that existed in
the data. If their algorithm produced a significant “CDC score” when applied
to this permuted data, it is obviously a false positive. After permuting the data
for all 6,187 genes, they calculated the “CDC scores” for each permuted data
set. Of the 6,187 permuted data sets, 75 produced significant “CDC scores.”
Thus, they estimated that about 75 of the 800 genes they identified as cell cycle-
regulated were false positives, and so the estimated false positive rate is slightly
less than 10%.

However, there are problems with this procedure. As noted above, the yeast
cultures were grown under different conditions, and the expression levels of the
genes were recorded separately for each set of conditions. In the above proce-
dure, Spellman et. al. apparently permuted all data for a given gene. In other
words, data from different experiments were combined. In addition to removing
the periodicity of the data, such a permutation could produce a smaller “CDC
score” because the data from different experiments may not be of comparable
orders of magnitude. Thus, they would underestimate the false positive rate.
A better estimate of the false positive rate would only permute the data within
the same experimental conditions.

Additionally, with Spellman et. al.’s method, there is no way to make a
confidence statement about an individual gene. They estimate the global false
positive rate, but there is no way to determine the probability that a given
gene is a false positive. Such information may be important for future research.
For example, one can imagine that a researcher might like to perform further
analysis on the 100 genes that are most likely to be cell cycle-regulated. Without
making confidence statements about individual genes, such an analysis would
be impossible.



5 My Proposed Alternative

In order to overcome these shortfalls of Spellman et. al.’s method, I devised
an alternative. My method is outlined below. S-Plus code for my algorithm,
as well as the complete data set that I used, are available at http://www-—
stat.stanford.edu/ ebair/cellcycle.tar.gz.

1. We examine the first gene on the array, and begin by considering the data
for only one of the four experiments. We perform a Fast Fourier Transform
on this data. (Prior to performing the transformation, we discard any
missing values in the data.)

2. If there is an underlying periodic signal in the data, we should be able
to represent this signal with a small number of high-order Fourier coef-
ficients. Thus, we set each of the Fourier coefficients from step 1 to 0
except for the first three (including the constant term). Then we invert
the transformation.

3. Step 2 gives us an approximation of the original data. We compute the
sum of squared errors of this approximation.

4. Randomly permute the data 1,000 times and repeat steps 1, 2, and 3 for
each permutation. This will produce a vector of length 1,000 consisting
of the sum of squared errors that result from applying step 2 to each
permuted vector.

5. As discussed earlier, permuting the data should destroy any periodicity
present in the data. Moreover, the Fourier approximation that we obtain
in step 2 should be a good approximation if the data is periodic, but
should be a poor approximation otherwise. Thus, if the gene is cell cycle-
regulated, we would expect the error associated with the original data
to be much smaller than the the errors associated with the permuted
data. Otherwise, we would expect all the errors to be approximately the
same. We can formulate the problem as a hypothesis test as follows: Let
the null hypothesis be that there is no periodicity in the data, and let the
alternative hypothesis be that the data is periodic. Using the permutation
test procedure described in Efron and Tibshirani (1993), we can compute a
p-value for this hypothesis test: Simply count how many times a permuted
data set produces a smaller sum of squared errors than the original data,
and divide this number by 1,000. In this manner, we obtain a p-value for
each set of experimental conditions for each gene.

6. A slight difficult arises from the fact that there are four sets of experimen-
tal conditions, and four data sets for each gene. In other words, the above
procedure will give us four p-values for each gene. It is unclear how we
should classify a gene if some of the p-values are significant but others are
not. To resolve this problem, we examine the smallest of the four p-values.
Under the null hypothesis, each p-value should be uniformly distributed



on the interval [0,1], so the minimum of the four p-values should have a
Beta(1,4) distribution. (See Rohatgi (1976) for a derivation of this re-
sult.) We use this fact to compute a final p-value for each gene: Denote
the smallest of the four p-values by . Under the null hypothesis, z should
have a Beta(0,1) distribution. To compute the p-value, we compute the
probability that a Beta(0,1) is less than or equal to z.

Applying this procedure to each gene in the yeast genome, we obtain a p-value
for the null hypothesis that the gene is not cell cycle-regulated.

The only remaining question is to decide how small the p-value for a gene
must be in order to be considered “significant.” This significance threshold
must be high enough that we correctly identify most or all of the cell cycle-
regulated genes, but not so high that the algorithm produces a large number
of false positives. To reconcile these competing goals, I set the maximum ac-
ceptable false positive rate to a fixed value a. I then found the largest possible
significance threshold such that the associated false positive rate does not ex-
ceed a. Benjamini and Hochberg (1995) show how to find this threshold: Let
pa) < --- < pe1sr) be the ordered, observed p-values for the 6187 hypothesis
tests. Let

k = max {k | p) < k/6187 - a}

and reject p(1),--- Diiy- This procedure maximizes the number of significant
genes identified while maintaining a false positive rate less than or equal to a.

6 Results and Conclusions

As noted above, Spellman et. al. identified 800 genes as cell cycle-regulated
with an estimated false positive rate of 10%. They correctly identified 95 of
the 104 genes that are known to be cell cycle regulated. When I set the false
positive rate to be 10%, my procedure identified 3037 genes as possibly cell cycle
regulated, including 98 of the 104 known genes. I set the false positive rate to
1% and repeated my procedure. The algorithm found 997 genes that may be
cell cycle-regulated.

I believe these numbers demonstrate that my algorithm has much greater
power than the procedure that Spellman et. al. used. If anything, the increase
in power is even greater than the above results indicate. Recall that Spellman
et. al. estimated the false positive rate of their procedure by permuting all the
data points associated with a particular gene, whereas I only permuted the data
within each set of experimental conditions. Thus, my estimated false positive
rate is more conservative than Spellman et. al.’s estimate.

Furthermore, with my method, one can make confidence statements about
individual genes. Each gene has an associated p-value, so we have an idea of



the probability that a given gene is cell cycle-regulated. Thus, if a researcher
wanted to restrict her or his attention to the “most significant” genes, it would
be easy to do so. With Spellman et. al.’s method, however, there is no obvious
way to do this.

We must use caution when interpreting the results of the two methods. The
p-values and estimated false positive rates for my method, as well as Spellman
et. al’s method, do not directly measure the probability that a gene is truly
cell cycle-regulated. They measure how well a given gene’s expression data fits
our model. (i.e. The data should be periodic and sinusoidal.) However, there is
no biological requirement that the expression level of a cell cycle-regulated gene
should follow this pattern. It is also possible that a gene could have a sinusoidal
expression pattern even if it is not cell cycle-regulated. Thus, it is incorrect
to say that 90% of the 3037 genes I identified must be cell cycle-regulated. We
have only shown that about 90% of these 3037 genes show evidence of sinusoidal
expression patterns.

This distinction is important because both my method and Spellman et.
al.’s method may be overestimating the number of cell cycle-regulated genes.
Price et. al. (1991) estimated that some 250 cell cycle-regulated genes might
exist. Obviously, we cannot be certain whether this estimate is accurate. How-
ever, it does seem improbable that 3037 yeast genes are cell cycle-regulated.
This is nearly half of the yeast genome. My method, or any other computa-
tional method, cannot be expected to perfectly classify each gene in the en-
tire genome. However, I feel that it represents a quick and relatively simple
procedure to identify such genes before resorting to laborious and expensive
laboratory experiments.
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