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Introduction

Hidden Markov models (HMMs) [1-3] have been shown to be quite effective in classifying
protein families and recognizing protein motifs from amino acid sequences. These models
consist of a set of states, each with a probability of generating a particular residue, and a set of
transition probabilities for moving from one state to the next. For protein sequences, there is
usually a single state for each residue position in the model, and the transition possibilities are
restricted to three: transition to the next residue position, insertion, or deletion of the next
position. Thus, HMMs are constrained to represent only correlations that are local in the amino
acid sequence. That is, the amino acid observed at a particular position only depends directly on
the position immediately preceding it.

Further, the HMM is assumed to be causal in that the dependencies are only with preceding
positions and not the following positions. One could turn the sequence around and model it as
anticausal, but two-way correlations cannot be modeled with the HMM structure that is usually
employed.

These observations lead to questions about whether more distant correlations contain
important information that might improve classification performance. From observing protein
structures, it is clear that most active sites are composed of residues from different parts of the
protein sequence, so they are not as local as the HMM model would imply. Thus, if we had a
way to model more distant correlations, we might be able to improve the specificity of motif
recognition.

Once we determine that we want to try to model more distant correlations, we encounter two
related problems. First, we have to consider how we will model the correlations. Given an
unknown sequence aligned to a known model, one straightforward approach would dictate that
we develop ajoint probability model for each pair of residue positions. Such a model would be
multinomial, with 400 (20 amino acids x 20 amino acids) possible outcomes. Unfortunately,
developing such a model for anything but the smallest protein motifs quickly becomes a large
problem. For a 200-residue model, we would have 200x200 = 40000 pairs to evaluate, with 400
possible outcomes for each. Further, as we shall see in alater example, using al of the possible
pairs may not give optimal detection.

Given that we do not use all possible pairs of positions, we have to choose a subset of the
pairs to use in our evaluation, and therein lies the second problem. We will need a method for
determining which pairs of positions to use. Fortunately, information theory provides us with a
useful tool in this regard. The measurement of mutual information [4] between residue positions
can help determine which pairs are most informative. This method has been used previously to
investigate properties of the basic helix-loop-helix domain [5], but could be used with virtually
any protein family with enough known members to compute reliable probabilities.

Mutual information between two random variables x and y measures the degree to which
knowledge of x informs about y, and vice versa. If x and y are dependent random variables, then
their mutual information is high. If they are independent, then their mutual information is zero.
Those pairs with high mutual information may be good candidates for use in motif detection
because they represent locations where certain amino acid pairs tend to occur together.

We propose to use the most informative pairs of residue positions, or cliques, to enhance the
detectability of hidden Markov models. In our approach, an unknown protein is aligned to an
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HMM, and then a score for each clique is computed from the multinomial probability derived
from the alignment of the known class members to the HMM. The clique scores are summed to
generate a composite clique score. We then compute the optimal linear combination of the
HMM score and the clique score to give asingle metric for the query protein. That metric can be
used to classify the query as a member of the family or not.

In the sections that follow, we investigate the utility of the proposed method by examining
its classification performance on three protein families: globins, EF-hand proteins, and
flavodoxins. We will first describe the methods used to compute the informative cliques from an
HMM aignment. That will be followed by the experimental methods used to determine the
optimal linear discriminants and the optimal clique size for each protein type. Next we will
describe the experiments used to apply the linear discriminant to the complete Swiss-Prot
database [6, 7]. We will then follow with the results of these experiments and some discussion
of the results.

Methods

Extracting Members of the Protein Families

For each of the three protein families, globin, EF-hand, and flavodoxin, we performed text
searches using the Sequence Retrieval System of the Swiss-Prot database [6, 7], release 39.23.
The searches were as follows: “globin” returned 827 entries, “ef-hand” or “ef hand” returned 673
entries, and “flavodoxin” returned 107 entries. These entries were downloaded as FASTA-
format files. While there may be problems with the text search, i.e., there may be some members
of the families missed, we expect that the HMMs derived from the entries retrieved to be
representative of the family. This approach has been used previously [8].

For each family, our method requires a representative HMM. For the globin family, we
selected 500 sequences from the set of globins, performed a multiple sequence alignment using
ClustalW [9, 10], and then input that result into the program hmmbuild from the HMMER
package [3], obtained from Washington University. For the EF-hand family, we obtained a
multiple sequence alignment for the EF-hand domain from the PFAM database [11], and used
that as input to the hmmbuild program. For the flavodoxin family, we used each of the above
methods. one HMM derived from a ClustalW multiple sequence alignment, and one from a
PFAM adignment. The two HMMs derived for the flavodoxins were quite different, and we
analyzed each of them separately. The properties of the HMMs for each family are summarized
inTable 1.

Table 1: Properties of four protein family models used

Name MSA obtained from: ~ Number of members ~ HMM model length
Globin Clusta W 827 187
EF-hand PFAM 673 29
Flavodoxin-1 ClustalWw 107 646
Flavodoxin-2 PFAM 107 173

After deriving the HMMs, the family members were aligned to their respective HMMs using
the program hmmalign from the HMMER package. For each family, this generated a multiple
sequence alignment aligned to the positions of the HMM model. These multiple sequence
alignments were then used to compute the mutual information at each pair of model positions.
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Deriving Mutual Information from an HMM Multiple Sequence Alignment

Mutual information M(i,j) of two model positionsi and j is computed as follows:
o OP(A=cA=d)C
M(,j)= P{A =c,A =d]log, 3 []

3 2P ZeA =)0 Gty (a0t
where the summation variables ¢ and d take on the value of each of the twenty amino acids, P()
represents the probability of the event in parentheses, and A; represents the amino acid at position
i. Therefore, the expression P(Ai = ¢, Aj = d) represents the joint probability of the amino acid at
position i being ¢ and the amino acid at position j being d. Because the logarithm is base two,
the units of mutual information are bits.

For this study, we developed a program in the Python language to compute mutual
information from a HMM multiple sequence alignment given by hmmalign. In our case, the
individua position probabilities were computed from the HMM multiple sequence alignment by
taking each position and determining the frequency with which each of the twenty amino acids
occurs, as in deriving a position-specific scoring matrix [12, 13]. Only sequences with no gap at
the given position were used in the computation.

To compute the joint probabilities, a similar approach was used for the 400 possible amino
acid pairs, determining the frequency of each amino acid pair for a given clique. If a gap
occurred at either of the two clique positions, that sequence was ignored in the frequency
calculation. Mutual information was only computed for positions of the multiple sequence
alignment that were aligned to the HMM model, i.e,, insertion states were ignored. Also, the
mutual information was set to zero for model positions that had more than 50% of the sequences
with a gap symbol. This threshold was arbitrary, and its effects should be studied in the future.
Finally, single position cliques, i.e., the mutua information of a position with itself, were not
used.

Our program will output in a file the K most informative cliques from the mutual
information computation, and also outputs an NxN greyscale image representing the mutual
information at each clique, where N is the length of the HMM. For each of the K most
informative cliques, the program stores the model positions and the 20x20 joint probability
matrix for that pair of positions. The clique file is read by the clique scoring program, described
later.

(1)

Finding the Optimal Linear Discriminant

To find the optimal linear discriminant for each family which provides the (hopefully) best
linear combination of the HMM score and the clique score, we performed a classification test
with a small random test set of 500 protein sequences taken from the Swiss-Prot database,
version 39. In each case, the random set was checked and revised to eliminate members of the
family. For the family members (the true positives) and the random set (the true negatives), the
program hmmpfam from the HMMER package was run to obtain scores for each protein
sequence’s alignment with the family HMM. The E-score threshold was set to 10° to obtain a
score for each protein, even the most poorly aligned ones.

We developed a second Python program to take the output of hmmpfam and compute a
clique score for each sequence, based on its alignment with the HMM and the set of probabilities
in the cliquefile. The clique score was computed using alog-odds based formula:
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where A is a protein sequence with amino acid A; at position i in the HMM alignment, P(A;, A)) is
the joint probability of the two observed amino acids according to the clique description, and K
is the number of cliques. If the argument of the logarithm is less than 1.e-100, the logarithm
term is thresholded to —100 for that clique. Thus, the arbitrary addition of 100 to the score makes
the clique score tend to zero for poor alignment with the set of cliques. A large positive number
would tend to indicate a good alignment with the cliques. Equation contains a number of
arbitrary decisions that could affect results, especially the use of log-odds scoring versus other
methods. These are issues that should be studied in the future.

For each family, we evaluated the set of true positives and the set of true negatives against
both the corresponding HMM and a set of cliques. For each sequence we obtained a pair of
scores (Svm(A), Suique(A)) which was treated as a feature vector. We computed the Fisher linear
discriminant for each family and number of cliques using methods described in [4]. This gave
the linear combination, w, of the two metrics with optimal separation between the positive and
negative classes:

Sqe(P) =100+ — > g @)
cliques(i, j)

SFi sher = WSnmm + (1 - W) Sclique (3)

Optimizing the Number of Cliques

The 500-member random test sets were aso used to evauate the effects of number of
cliques, K, on class separability. For a given metric (S Stiques OF Srisner) and family, we
computed the class separability, sometimes called discriminability [4], as follows:

d - mpzstlv&s rn;egatlv&s ( 4)

\/ Spos'tivs + Snegatives

where myositives represents the mean value of the metric among all true positive sequences, Syositives
represents the standard deviation of the metric among all true positives, and similar symbols
apply for the true negatives. Thisisakind of signal-to-noise ratio representing how far apart the
two classes are relative to their distributions. It relates directly to detectability and the receiver-
operating characteristic (ROC) for normally-distributed populations. In our case, none of the
metrics appears to normally-distributed, so it is not a perfect measure. It is, however, quite
simple to compute and is closely related to the optimized separability determined by the Fisher
discriminant.

We evauated each family for a variety of numbers of cliques, and computed the class

separability for each. This alowed us to examine the effects of K, and choose an appropriate
value of K to be used for scanning the complete database.

Scanning the Swiss-Prot Database

To determine the ROC curve for each case, we extracted from the Swiss-Prot database sets
of proteins not included in our protein families. Version 39 of the database includes 86593
proteins, and these family-excluded datasets comprised 85808 sequences for “not_globins’,
86029 sequences for “not_ef _hand”, and 86496 for “not_flavodoxin.” The “not” and family
datasets do not generally sum to 86593 because the family datasets were derived from the more
recent web-accessible version of the Swiss-Prot database (version 39.23) which contains more
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sequences than the downloaded Version 39. No sequences were common to both the family and
the “not family” sets.

For each family, a particular value of K was chosen based on separability determined in the
previous step and on processing time. As increasing K increases the processing time for each
sequence, if increasing K resulted in only a small improvement in d, the smaller value was
chosen. We used K=1000 for the globins, K = 400 for the EF-hand, and K = 500 for both
flavodoxin sets.

We evaluated all members of the family and “not family” sets using first hmmpfam and then
our clique scoring program. We then computed the Fisher metric for each sequence using the
discriminant determined from the small test set. For each metric, the entire set of proteins were
ordered according to score, and true positive fractions and false positive fractions were computed
by taking intervals of the ordered set, and computing the number of true positives and false
positives at each interval. From these data, we were able to plot ROC curves for each case.

Results

Visualization of Mutual Information

Figure 1 presents images that provide a useful visualization of mutual information for each
protein family. The images are reminiscent of dot plots, with each pixel representing one clique.
Consider the model positions as lying across the top of the image and down the left side of the
image. Each pixel represents the pair of positions that intersect at its location. The greyscale
value of the pixel isrelated to the mutual information for that cliqgue. To make the images more
useful, we show only the K most informative positions with all others set to black. The
diagonals are also set to black because single-position cliques are not used in our model.

One important observation found in all of the images is that many of the most informative
positions are far from the diagonal. This indicates that these correlations are rather distant in
terms of the sequence, since local correlations would be found close to the diagonal. Further, we
note that many of the most informative positions fall in certain columns or rows of the image.
Thus, certain positions tend to form more informative cliques with a number of other positions.
Interpreting the significance of such positions is difficult. They cannot be absolutely conserved,
because the mutual information of any clique containing a perfectly conserved position is zero.
(This occurs since the two positions would meet the definition of independence in such a case.)
Such positions would likely have several co-occurring pairs of amino acids. Future studies
should examine the structural and functional significance of such sites.

We expected to find that certain cliques would stand out with relatively high mutual
information, but this was not the case for any of our models. Many cliques were close to the
maximum mutua information value, so we could not extract particularly sensitive locations.
Thus, we expect that it will be necessary to use a relatively large number of cliques for
recognizing proteins.

The image for the EF-hand family is particularly interesting because it illustrates properties
of the EF-hand structural motif. This motif consists of 9-12 residues of apha helix followed by
9-12 residues of random coil and 9-12 residues of another alpha helix [14]. We see that the
mutual information image for the EF-hand divides the sequence into three roughly equal
sections. The most informative cliques tend to involve the alpha helices with the coil section in
the middle tending to have low mutual information. The implication is that the apha helices
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Figure 1: Mutua information maps for the four protein models. The maps have been
thresholded for the K highest cliques, where K = 2000 for the globin model, 400 for EF-hand,
and 500 for both flavodoxin models. Note that flavodoxin-1 only maps model positions 400-
646 as these contained all of the highest values of mutual information.

tend to have dependent, co-occurring amino acids while the amino acids in the coil section tend
to vary independently.

Effects of Number of Cliques

Figures 2 through 5 show the effect of number of cliques on class separability for each of the
four models studied. In general, we find that the clique scoring alone does not provide better
separability than the HMM, although the flavodoxin-1 model is an exception. Further, we find
that, while there is usually a K value at which the separability is optimized, the optimum is
usually not very distinct and the K value can be reduced for computational efficiency without
sacrificing separability much.

The separability values can be used as a predictor of the comparative performance of the
methods in detection of the protein family. Thus, we would expect the Fisher metric to
significantly outperform the HMM for the EF-hand case, but probably not for the globin case.
However, we must be careful with such predictions for two reasons. One, the detectability
metric is only an accurate representation when the distributions are normal, and, from
observation of the histograms, ours are not. Two, we have not computed the standard errors on
the detectability metric, so we do not know if the differences are statistically significant. It
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model. model.

would be possible to do that computation, or to fit an ROC curve to the test-set data to estimate
significant differences in performance. We did so using the program Rockit from University of
Chicago [15], and found significant differences only in the flavodoxin-1 model between clique
and HMM and between Fisher and HMM. Thus, we expect to see these differences in
performance in database scanning.

The individua results for the EF-hand family show an interesting peak at K = 400 and a
reduction in performance at K = 800. Because the model is only 29 residues long, there are only
29% = 841 cliques available. Thus, performance is degraded by including nearly all of the cliques
in this case. SO, even if we chose to pay the computational costs of using al of the cliques, it
may not be the best choice to do so. For the other, longer models, we did not test for K being
close to the total number of cliques available, so we cannot conclude that this effect necessarily
continues to hold for other families.
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Database Scanning Performance

Figures 6 through 9 present the ROC curves for the four models. For each case, we present
a close-up view of the curves for false positive fractions up to .1, and a second view for the full
range of false positive fraction up to 1.0.

Figure 6 gives the scanning results for the globin model. We find that the Fisher metric
consistently has a lower ROC curve than the HMM model. An exception to this is for the first
500 proteins scanned (Thisis difficult to see in Figure 6.), Fisher gets about three more hits than
the HMM. The results are, however, pretty conclusive that the Fisher metric does not improve
performance of the globin HMM. One possible reason is that the distributions of the globin
HMM and clique scores are far from normal, and so the Fisher method cannot find the true
optimal discriminant. A second possibility is more rooted in the properties of the globin family:
the globin alignment may contain a relatively large number of well-conserved amino acids.
These are modeled effectively by the HMM, but not by the clique score, which tends to favor
consistently-occurring pairs. Thus, the globin family may have properties that ssimply do not
lend themselves to detection by the clique score.

Figure 7 shows results for the EF-hand model. In this case, the Fisher model outperforms
the HMM for low levels of FPF (up to the highest-scoring 8000 proteins), but then the curves
cross and HMM performs as well or better thereafter. Thisis, of course, our smallest model and
is representative of the task of finding relatively small protein domains. Again, the assumptions
of normality implicit in the use of the Fisher metric are probably violated, so we may not have
truly optimal performance for the linear discriminant. However, the Fisher model does give
improved performance in finding the first 95% or so of EF-hand proteins. Thus, clique scoring
data does add useful information for the task of finding the most homologous proteins in this
case. If thetask isto find the last few family members, then the Fisher metric does not perform
aswell asthe HMM.

Figure 8 gives results for the flavodoxin-1 model, derived from ClustalW multiple sequence
alignment. This was a particularly long model, and it gave some unexpected results. Namely,
we found that both the clique scoring method and Fisher far outperformed the HMM. Note that
this was predicted by our small test set analysis in that these were the only cases where a
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Figure 6: ROC curves from scanning the Swiss-Prot database for the globins model. The left
chart presents a close-up view of FPF up to .1; the right presents the full curves.
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Figure 7: ROC curves from scanning the Swiss-Prot database for the EF-hand model. The left
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Figure 8: ROC curves from scanning the Swiss-Prot database for the flavodoxin-1 model.
The left chart presents a close-up view of FPF up to .1; the right presents the full curves.

significant difference in areas under the ROC curves were found. In looking at the HMM
alignments, it became clear that this HMM model was particularly poor, with many members of
the flavodoxin family generating poor scores. One would expect that a poor HMM model would
lead to poor performance of the clique score and consequently the Fisher metric. But, in fact, the
Fisher metric performs very well. The results become even more puzzling when we look at the
second flavodoxin model.

Figure 9 gives the results for the flavodoxin-2 model, derived from the PFAM alignment. In
this case, the more compact HMM performed better than the flavodoxin-1 model. However, the
clique scoring method performed worse than that from the flavodoxin-1 model. The Fisher
metric does still consistently outperform the HMM, though not as significantly as with
flavodoxin-1. It is encouraging that, for the flavodoxins, the Fisher metric provides
improvement in classification performance at al levels of FPF, for two different HMMs.
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Figure 9: ROC curves from scanning the Swiss-Prot database for the flavodoxin-2 model.
The left chart presents a close-up view of FPF up to .1; the right presents the full curves.

We note that the Fisher model for flavodoxin-1 shows better performance than the Fisher
model for flavodoxin-2, even though the performance comparison of the HMMs on which they
are based is opposite. This leaves quite a mystery that further analysis of the properties of these
multiple sequence alignments, HMMs, and mutual information maps should try to explain. It
may give us an indication of what properties of protein families and HMMs are best suited to use
of clique scoring.

Discussion

Among the three protein families studied, we have mixed results for the use of clique
scoring and a Fisher linear discriminant to enhance the selectivity of protein family recognition.
For the globins, the clique scoring did not improve the performance of the HMM in any way.
For the EF-hand proteins, clique scoring improved on the HMM performance in finding the first
95% of members of the protein family, but was not as good thereafter. Finally, with the
flavodoxins, clique scoring consistently improved upon the ability of the HMMs to recognize
family members. Based on these results, we can conclude that clique scoring may enhance
classification performance, but the results will depend on which protein family we are trying to
detect. A useful future direction for this work would be to examine other protein familiesin this
way, and to attempt to find some properties of protein families that predict when clique scoring
will improve or degrade performance.

Thisis merely afirst attempt at such an application of distant correlations among amino acid
positions. In [5], the authors used entropy analysis of single positions along with mutual
information analysis to study the properties of basic helix-loop-helix (bHLH) proteins.
However, they used this information to develop a regular expression for database scanning. A
problem with the use of regular expressions is that they do not capture the probabilistic nature of
the correlations, and thus have no way of assessing the significance of matches. Our approach
improves on this idea by applying methods similar to position-specific scoring matrices. A
position-specific scoring matrix contains a multinomial probability distribution for each residue
position. In our case, we have smply added another dimension to this idea to evaluate pairs of
positions together. The clique scores are directly related to the observed probabilities of the co-
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occurring amino acids. With further work on the statistics of clique scoring, it should be possible
to provide significance estimates of both the cligue scores themselves and the Fisher scores.

We have made a number of arbitrary, though hopefully logical, choices in our
implementation of clique scoring. These include the functional form for computing the clique
scores (Eq. , the methods for determining the linear discriminant, and even the use of HMMs
as the basis for multiple sequence alignment and scoring. There are other options for al of these,
and other choices would likely change the performance of the method. Further research should
examine and evaluate other approaches. For example, clique scoring would naturally fit in with
a position-specific scoring matrix, so that it would be possible to align an unknown protein
directly with afamily described by both single-position and clique scores. Because of their two-
way, non-causal nature, aligning to clique scores would require the use of a stochastic algorithm
that randomly generates and evaluates different alignments.

Further, it would be possible to define cliques containing more than two positions, because
these would ssimply be multinomial distributions also. Mutual information could not be used to
evaluate such cliques, so other measures, perhaps joint entropy, would have to be used to find
good candidates. Also, the number of possible outcomes increases exponentially with clique
size, so larger-sized cliques would have to be chosen very carefully to find those that are most
helpful inidentifying protein motifs.

In forming our probabilities related to clique outcomes, we used only the observed
frequencies directly from the multiple alignments. We did not consider issues related to species
or protein bias in the families. These arise from the fact that only certain species have been
studied extensively, and so the protein databases contain large numbers of proteins from these
and fewer from other species. Similarly, certain homologous proteins may be more present in
the database and therefore may bias the results of the HMM and the clique probabilities. To
address this, one could consider weighting the sequences differently [8] and/or including prior
information in the form of pseudocounts in the clique frequency matrices [12]. These methods
could help remove biases and improve the performance of clique scoring.

Another option in the implementation of clique scoring is to ater the definition of the
discrete events represented by the amino acids. In [5], the authors proposed classifying the
amino acids into eight types (acidic, basic, aromatic, etc.) thus reducing the number of outcomes
at each site from twenty to eight. Mutual information is then computed in the same way, with
the transformed set of outcomes. This would tend to give a more biochemically oriented view,
and would allow substitutions of chemically-similar amino acids. Such a method may be more
forgiving, especialy if the family in question has relatively few members. In the future, the
method we propose here should be compared to the use of amino acid classes to determine if
performance can be further improved.

Computational load is an important consideration in any database scanning method. The
clique evaluation generally took about half again as much time as the original HMM alignment,
S0 it can be a significant computation. It is likely that the clique scoring could be improved with
optimization techniques, as we did not seek to maximize efficiency here. But, the computation
time will increase linearly with K, so it will always be important to choose K to be as small as
possible without sacrificing too much performance.

Conclusions

We have developed methods for enhancing protein family and motif recognition by
evaluating cliques, or highly informative pairs of protein positions. Our method for clique
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identification, using mutual information, and clique scoring, akin to a position-specific scoring
matrix, was combined with scores from hidden Markov models via a linear discriminant.
Optimization of the number of cliques used in cligue scoring may be necessary in some cases to
obtain best performance. In database-scanning tests against three protein families, our method
was found to improve on the use of HMM aone in some cases and not in others. We conclude
that the use of informative cliques can improve the performance of hidden Markov models, but
that results depend on a number of factors, and especially on the properties of the protein family
itself.
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