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Abstract. The goal of this Project is to introduce a framework to describe

the stochastic and nonlinear processes of genetic pathway selection and to
critically evaluate the validity of this framework by assessing its applicability to

a model of the phage λ infection of E.coli cells. The framework is a Monte Carlo

approach whereby the particles’ trajectories through state space are simulated
using appropriate probability distributions while the phage λ-infection model

is a simplified three gene, three promotor regulatory network.

Introduction

Proteins are the workhorses of the cell; other than DNA or RNA, all the complex
molecules in a cell are proteins. Highly specialized proteins fulfill their own tasks:
from transporting oxygen, to facilitating specific biochemical reactions, to respond-
ing to extracellular signals, and many more. In particular, certain proteins bind
directly or indirectly to DNA to perform transcriptional regulation, thus closing
the circle of gene regulation whereby the information stored in DNA is transcribed
to mRNA, followed by translation into proteins.

One of the key questions in gene regulation is: what genes are expressed in a
given cell at a certain time under which conditions and how does this differ from
cell to cell?

One of the many challenges in trying to answer this question is the construction
of a modelling framework for transcriptional regulation that meets certain minimal
requirements: it is generally and widely applicable, it can be validated experimen-
tally, its system-level behavior can be understood in terms of (few) biochemical
parameters, and it needs to have the built-in capability to describe a particularly
rich set of interesting stochastic phenomena encountered in gene regulation.

This is a modest attempt to lay out how such a framework could look like.

1. Bacteriophage λ Infection of E. Coli Cells

1.1. Introduction. Phage λ is a virus, i.e. a capsule of genetic material that relies
upon the transcription machinery (either used intact or modified to fit the virus’
needs) of the host cell to express its genes. As such, the study of either initiation
and subsequent growth or repression of bacteriophage development has provided
a wealth of information [3] on the mechanisms of transcription and regulation,
especially in prokaryotes. Phage λ in particular has had its complete genome ( 50
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kbp) sequenced some time ago. Its host, E. coli, has been studied extensively as
well.

Phage λ looks a bit like a prop from a low-budget 1950s sci-fi movie: the virus
has a ”head” domain, which holds the packaged DNA, and a ”tail” domain which
helps bind the virus to the surface of the bacterial cell and serves as a conduit for
the injection of the virus’ DNA into the host. Upon injection, λ uses the host’s
enzymes, such as RNA polymerase (RNAp), for certain functions. In addition, λ
does not encode its own ribosomes or DNA polymerase either. All in all, λ’s DNA
encodes for about 40 different genes, a substantial part of which (21)are structural
and dedicated to the construction and maintenance of the tail and head of the virus.

λ is a temperate phage, i.e. it does not always kill its host. When a phage injects
its DNA into the E. coli host one of two things can occur: Either the phage replicates
(releasing its progeny) and in the process of doing so destroys its host. This is
known as lysis, a cycle of growth. Or the phage integrates its DNA into the host’s
DNA. This is known as lysogeny, in which the viral chromosome circularizes and
undergoes site-specific integration into the host-cell chromosome. Upon lysogeny
the host acquires immunity from further infection for many generations. Under the
proper conditions–for instance, treatment of the cell with UV light–lysogeny can
be broken with subsequent induction of lytic growth.

1.2. A Simplified Model for the Transcriptional Regulatory Network. In
a lysogenized cell, the only viral protein expressed in quantity over time is cI (a.k.a.
λ repressor). cI represses transcription of lytic genes. However, the open complex
(i.e., in the absence of gene products) for cI has a very low basal activity while
other proteins–with higher open-complex activation rates–such as Cro, are negative
regulators of cI thus favoring lytic growth. In addition, their promoters, PRM

and PR, are controlled by the concentration-dependent logic of a shared three-
operator site. (This complex can be shared because cI and Cro genes are separated
onto leftward, resp., rightward transcribed strands.) The whole set-up is usually
referred to as the ”λ switch” and makes for a precariously balanced system of early-
stage gene production. 1 To complicate matters further, at least one other gene
product, N, acts as an antiterminator protein allowing for regulated read-through
of transcription terminators in certain genes, such as cII and cIII whose proteins are
positive transcriptional activator and stabilizing proteins for cI. N itself, however,
is repressed by cI and Cro through regulation of its own promoter, PL. In this
Project, we will restrict ourselves to these 3 genes and 3 promoters.

While the above model of phage λ-infection is anticipated to exhibit a rich set of
gene production and pathway selection phenomena, it is still an oversimplification.
More elaborate models [2] typically include many more of λ’s genes–including some
of E.coli’s genes–and an increased number of termination and antitermination sites
as well as substantial non-genetic reaction subsystems.

1.3. Formal Equations. We start from the following reaction kinetics:

(1.1) ṁi,b = KmKiAi(pj)−
λi

Li
mi,b i, j = Cro,N, cI

which describes the binding of RNA polymerase to the DNA and the initiation and
elongation stages of the transcription process. In (1.1) Km is the concentration of

1A typographic convention: genes will be in italic, the corresponding gene product in roman.
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RNA polymerase (RNAp), assumed to be a constant 30nM , Ai the (dimensionless)
activation probability of the complex (a potentially fairly involved and non-linear
function of the gene products pj), Ki is the open complex reaction rate, while λi

is the reaction rate for the elongation process, nucleotide by nucleotide, and Li the
transcription length. (We assume that once transcription is initiated, it runs to
completion.) Taking into account the degradation of the free mRNA on its way to
the ribosome due to ribonuclease (RNase) binding:

(1.2) ṁi =
λi

Li
mi,b − (λ̃i[ribo] + λ̂i[RNase])mi

where [ ] are concentrations, we proceed to describe the translation process as

(1.3) ˙̃mi = λ̃i[ribo]mi −
βi

Γi
m̃

where Γi is the translation length, βi the translation rate per nucleotide. In turn,
this leads to the gene product and protein degeneration or degradation process
description:

(1.4) ṗi =
βi

Γi
m̃i − kipi

Here ki is an overall reaction rate for the protein degeneration process(es) . No
dimer production and/or higher order protein reactions (for instance, those involv-
ing cII and cIII) are considered.

The above set of equations are fully deterministic (in that they neglect the
stochastic character of the interactions between the molecular components) and
continuous (in that they neglect the discrete nature of the molecular components
2.)Stochastic effects are believed to be important in genetic networks [10] and are
typically included as described [1]. We will discuss later on how to incorporate such
effects in the framework.

This system of ODEs (1.1), (1.2), (1.3), (1.4) was solved using a 4th order Runge-
Kutta method with the parameters summarized in the Table below.

i Ki(s−1) λi(s−1n−1) Li(n) λ̃i[](s−1) λ̂i[](s−1) β(s−1n−1) Γi(n) ki(s−1)
Cro 0.014 30 550 0.3 0.03 100 320 0.0025
N 0.0011 30 550 0.3 0.03 100 320 0.0023
cI 0.002 (est) 30 550 0.3 0.03 100 320 0.0007

Zero mean random noise was added to all state variables but not more than a 0.1
change in absolute magnitude in any variables was allowed.

We now turn to the activation function Ai(pj). Obviously, in the limit of no
gene products (pi → 0), the activation function needs to match the open complex
rates. Similarly, for fully repressed or activated promoters (pi →∞) the activation
probability needs to converge to either 0 or 1.

Perhaps the most fundamental way to calculate the activation level as a func-
tion of the concentration levels of several reactants and products occupying multiple
operator sites comes from (equilibrium) thermodynamics in combination with the
use of partition functions [7], [8]. However, such calculations have not always been

2For instance, per E.coli cell, we are dealing with one DNA, a few RNA molecules, and tens
to hundreds of proteins.
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carried out to the necessary extent since the number of equations can grow exponen-
tially with the number of interdependent state variables. The latter complication
also bedevils the next approach: the parametric approach.

Parametric solutions are then usually proposed where the parameters are the
binding constants or probabilities of a gene product j to a specific operator site i
(but correlated with the presence of other gene products k bound to other operator
sites l) in the complex when the operator is active, resp., inactive. Needless to say,
the number of parameters is 2(N + 1)M where N is the number of gene products
involved (the extra 1 comes from the event that no gene product occupies an op-
erator site) and M is the number of operator sites. For our simplified model, this
would amount to 2×43, clearly an unrealistically high number to fit. Nevertheless,
parametric methods enjoy a certain justifiable popularity with the practitioners of
trainable (e.g., learning the weights of a neural network) gene regulation networks.
In particular, the Hierarchical Cooperative Activation (E. Mjolsness in [5]) (HCA)
method which describes the activation of ”promotor modules” in terms of transcrip-
tion factor concentrations which then in their turn are described in terms of the
corresponding promotor activations (i.e. Ai(pj) ≡ Ai(fj(Al)) has an undeniable
appeal to it.

1.4. Discussion. Despite the observation that the set of equations above is fully
deterministic–which may not be appropriate for genetic networks –it is worthwhile
to explore it a little further. The motivation for this is threefold: (i) it is possible
to add a noise term to this set and continue to use the machinery of ODE solving
techniques (see, for instance, the contribution of M. A. Gibson and E. Mjolsness
in [5]) all the while keeping in mind that one now solves for expected values of the
state variables and their variance [11], (ii) the ODE formulation has an intuitive
appeal to it and typically ”inspires” state space formulations such as those we
will propose below, and (iii) a classical study of the system when–or if–protein
production reaches the equilibrium state is particularly instructive in anticipation
of further stochastic modelling. Indeed, in the equilibrium case, solving the system
of ODEs simplifies to solving the set of algebraic equations:

(1.5) kipi = KmKiAi(pj)

or, by rescaling the protein concentrations:

(1.6) p̃i = (Ki/ki)Ãi(p̃j)

where p̃ = p/Km. These equations can have either zero, or a finite number, or an
infinite number of solutions. Stability for the equilibrium solution requires that in
the vincinity of that solution:

(1.7)
∑

j

(∂jÃi −
ki

Ki
δi,j) ˙̃pi ≥ 0

where ∂j is a partial derivative w.r.t. p̃j .
In particular, this system was solved for the oscillatory network of transcriptional

regulators [9] with cyclic repression, i.e. Ãi(p̃j) = 1/(1 + p̃n
j ), resulting in a unique

steady state solution. This steady state can be either stable or unstable. In the un-
stable case, cyclic transcriptional feedback loops or oscillators were obtained. Such
behavior was then further observed [9] in the ”repressilator” constructed from the
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transcriptional regulators LacI from E.coli, cI from λ, and tetR from the transposon
Tn10 3.

Another case of some educational interest is a two gene model where the first
gene is repressed by the gene product of the second but activated by its own gene
product while the second gene is repressed by both genes’ proteins. This is a
simplification of the cI, Cro network where cI production is repressed by Cro but
enhanced by itself (at least, at not too large a concentration) and Cro production
is repressed by itself and cI. If it so happens that the activation level for cI’s and
Cro’s promoter are well approximated by some simple polynomial functions, then
the system of algebraic equations (1.6) becomes:

(1.8) p̃cI = αcI(ε +
p̃2

cI

1 + p̃2
cI

× 1
1 + p̃2

Cro

)

(1.9) p̃Cro = αCro(
1

1 + p̃2
cI

× 1
1 + p̃2

Cro

)

(where αi = Ki/ki and ε is used to ensure a low basal activation level of the open
complex for cI) has a solution for any pair of cI, Cro concentration levels that
satisfies p̃cI × p̃Cro = αCro/αcI . Hence, random fluctuations in either protein’s
concentration around equilibrium can be accommodated by a commensurate change
in the other protein’s concentration.

In general, (1.6) is visualized by plotting its left hand side against the right hand
side and looking for intersections. Exploring alternative paths to these intersection
points as well as inspecting the curves for areas where they are particularly sensitive
to small changes in the constituent protein concentrations provides for valuable
insight in genetic networks.

In all our calculations, we used:

(1.10) Ai =
Jiui

1 + Jiui

where

(1.11) ui =
∏

j

(
1 + K̃p̃n

j

1 + Kp̃n
j

)
and K, K̃ are binding rates to operator sites.

2. A Framework for Recursive Nonlinear Estimation of Genetic and
Biochemical Networks

2.1. Introduction. From the discussion above, it is now clear that any general-
purpose approach for computational modelling of genetic networks needs to be able
to:

• handle stochasticity on the level of individual cells;
• accurately model highly non linear systems;
• include discrete as well as continuous state variables;

3As an aside: oscillatory behavior is not expected to occur in λ-infected cells; once the ly-
sis/lysogeny switch is thrown, spontaneous reversal of the decision is almost non existent. How-

ever, as mentioned before, lysis can be induced in the lysogenized cell. We can speculate if
the repressilator described above is capable to induce lysis as well by periodically repressing cI

transcription in such a cell.
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• be trainable i.e., be able to include the possibility of adjusting state vari-
ables or weights based upon measurements;
• include hidden state variables i.e., not directly observable ones.

We believe that the framework discussed below meets all these criteria.

2.2. The Unscented Particle Filter. We will now summarize in a very short
space developments in recursive estimation theory that have played out over decades
and have been the object of intensive analysis. Of necessity, this summary will be
broad rather than deep.

The Kalman filter is an exact filter, originally proposed for on-line optimal es-
timation of linear systems, which can be viewed as a highly efficient method for
analytically propagating a Gaussian Random Variable (GRV) (”the state”) through
linear system dynamics4. The Kalman Filter has been extended to the case of recur-
sive non-linear estimation via first-order linearizing procedures. Not surprisingly,
this is known as the Extended Kalman Filter (EKF). The Unscented Kalman Filter
(UKF), in contrast, is a recently proposed [6]–and rather ingenuous–derivative-free
alternative to the extended Kalman filter which provides superior performance at
an equivalent algorithmic cost. In essence, the method samples carefully chosen
additional points from the original GRV (”sigma points”) and propagates those
exactly (i.e. no Jacobians or Hessians required)through the state equations. It has
been applied very successfully in a number of application areas (state estimation,
parameter estimation, and dual estimation)5. Finally, after having consecutively
relaxed various conditions and limitations on the filter, the recently proposed [4]
Unscented Particle Filter (UPF) now also gets rid of the restriction of the state
variable distribution to a GRV by using sequential Monte Carlo (MC) methods.
These methods are also known as ”particle filters” because of their historic applica-
tions in nuclear physics. They allow for a complete representation of the posterior
state distribution and can therefore deal with any non-linearities or distributions.
Particle filters, however, rely on importance sampling and thus require the design of
proposal distributions that can approximate the posterior distribution reasonably
well. The UPF relies on the UKF to construct such a proposal distribution at each
time step.

2.3. Discussion. We are now ready to give the main result of this section, stripped
of almost all equations, but applicable to a wide variety of situations encountered
in modelling of genetic and biochemical networks. In this we follow the general
outline and notation of [4].

The basic framework for the UKF involves estimation of the state of a discrete-
time nonlinear dynamic system,

(2.1) xi(t + 1) = Fi(xj(t), uj(t), vj(t))

(2.2) yl(t + 1) = Hl(xi(t + 1), ni(t + 1))

where x represents the (unobserved or hidden) state of the system as a function of
time t, u a known exogenous input, and y is the observed measurement signal. The
process noise v drives the dynamic system and the observation noise is n. Noises

4There are other finite dimensional filters. For instance, the Hidden Markov Model (HMM)
filter is a very appropriate one–but rather specialized to the case of discrete state spaces.

5The main emphasis here will be on state estimation which is meant to be either on-line, as
the observations become available, or in batch mode, for a complete set of measurements.
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are zero mean. We are not assuming additivity of the noises. F and H are known
and define the dynamic system. Note too that all noises and inputs can be time-
dependent. Because the equations are rather involved, we summarize in words the
basic UKF procedure for state estimation:

• Time Update–Given the mean and covariance of the state at time t:
Propagate the mean of the state through the dynamic system via (2.1).
Calculate a new state covariance at time t + 1.

• Measurement Update–Given the updated state at t + 1:
Predict the measurement at t + 1 via (2.2)
Compare the predicted measurement with the actual one.
Construct a ”gain factor” based upon the covariance of the error.

• State Correction–Given the ”gain factor”:
Correct the state mean and covariance at time t + 1.

• Substitute t + 1← t and repeat the Time Update step.

As an example: For our 3 genes, 3 promotor model, the set of ODEs discussed
in the previous Section forms a suitable starting point for defining the state trans-
formation F from 2.1. Assuming the stochastic process is approx. a GRV, one
obtains the time evolution of the mean and covariance of the GRV. The estimation
is further refined by feeding the model noisy experimental data.

3. Conclusions

We sketched a framework for modelling of genetic networks which combines
the power of sequential Monte Carlo based methods with accurate techniques for
performing recursive nonlinear estimation for dynamic systems. We make no as-
sumptions about the exact nature of the system dynamics at this point but this
framework can clearly accomodate continuous reaction kinetics systems at the one
end of the spectrum and fully stochastic ones (such as master equations and transi-
tion probability matrices) at the other end. A particularly efficient implementation
can be obtained if one can assume that a stochastic process is approximately a
Gaussian at any fixed point in time, with a mean and covariance that follow differ-
ential equations, but such an approximation need not be made.

Such a framework could be operated in different and flexible ways: (i) as a pa-
rameter estimation method (a.k.a. machine learning or system identification) with
numerous applications in regression, classification, and dynamic modeling, (ii) in
dual estimation mode when both the system state and the modelling parameters
need to be simultaneously estimated from the noisy data, and (iii) in state estima-
tion mode.
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