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Introduction

The amphipathic alpha helix is a common secondary structural motif in globular proteins.
An amphipathic alpha helix is defined as an alpha helix with opposing hydrophobic and
hydrophillic faces oriented along the long axis of the helix.  Through the analysis of hemoglobin
and myoglobin, Perutz et. al. (1990) showed that amphipathicity can be detected through
sequence signals: Non-polar amino acids appear approximately every 3.6 residues in the linear
sequence, making one face of the folded helix hydrophobic.  Experimental studies have also
shown that amphipathicity is a major driving force in the formation of helices and the folding of
protein structures (Scheraga, 1985; Lyu et.al., 1990).  The objective of this study is to
characterize the periodicity in amphipathic helices using Markov models, and to assess the
effectiveness of these models in discriminating between different helices of different types.

The amphipathicity of an alpha helix can be determined by fitting its residues on a
“Schiffer-Edmundson” helical wheel diagram (Schiffer & Edmundson, 1967).    The helical wheel
diagram provides a top view of the helix, with the residue side-chains projected onto a plane
perpendicular to its long axis.  A similar method (Lim, 1978) projects the side-chain positions on a
“helical net” which imitates a cylindrical surface wrapped around the long axis of the helix.  Both
of these methods are easy to use, but suffer certain shortcomings.  It has been shown (Flinta et.
al., 1983) that the helical wheel representation has a tendency to over-estimate helical
amphipathicity.  Furthermore, these methods are inadequate for studying short helices (< 6
residues) and are tedious for the analysis of long sequences.

Fourier analysis offers a more quantitative approach to measuring the amphipathicity of
alpha helices.  The idea is to view the hydrophobicity (or solvent accessibility, if data is available)
of the residues in the protein sequence as a discrete linear signal, and analyze it using the
Fourier transform in the frequency domain.  The plot of these frequencies between 0 and 180
degrees has been traditionally called “Eisenberg Plots.”  Eisenberg et. al. (1984) was one of the
first to use this method to identify significant Fourier intensities at around 100 degrees, which
corresponds to the 3.6 residue per turn of alpha helices.  Eisenberg et. al. (1982) also introduced
the mean helical hydrophobic moment, which gave a quantitative interpretation of the helical
wheel.  In frequency domain, Eisenberg’s definition of the mean hydrophobic moment simply
translates to the modulus of the discrete Fourier transform at 100 degrees.

More useful to this study are the short-range signals that can be detected in amphipathic
helices, since only such signals can be detected using Markov models of low order.  An
accumulation of hydrophobic triplets at positions n, n+3, n+4 and at positions n, n+1, n+4 were
found by Palau and Puigdomenech (1974) to have a stabilizing effect on amphipathic helices.
More recently, a study by Negrete et. al. (1998) confirmed these findings and further concluded
that these triplet signals are a universal feature found in amphipathic helices of globular proteins,
whatever the overall architecture may be.

The periodic pattern in amphipathic helices have proved useful in secondary structure
prediction and helix classification.  Wako and Blundell (1994) combined amino acid substitution
patterns, helix capping signals, and Fourier transform approaches in a secondary-structure
prediction algorithm that reached 77% accuracy.  In a later study, Zhu & Blundell (1996) made
more explicit use of the size of the solvent-inaccessible face of an alpha helix to predict not only
the position of a secondary structure in a protein sequence but also its orientation with respect to
the core of the protein. In effect, the algorithm of Zhu & Blundell not only predicts the presence of
helices, but also classifies them according to their orientation within the protein.  A more
functional classification of helices was given by Segrest et. al. (1990), which used the mean
hydrophobic moment and other techniques to group amphipathic helixes in to seven classes of
different physical-chemical and structural properties.

One critical assumption that many studies make about alpha helices is that they have the
ideal structure defined by the classical work of Pauling et. al., i.e. that the alpha helix is a regular
helix with 3.6 residues per turn.  The construction of the Schiffer-Edmundson wheel and Lim’s
helical net, especially, rely heavily upon this assumption of regularity.  In reality, however, up to
80% of helices in globular proteins deviate from this ideal (Barlow & Thornton, 1988).  Many long
helices of over four turns are kinked, caused by the presence of a proline in the interior of the
helix.  A majority of helices also exhibit a slight degree of curvature of the helical axis (~60
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Angstrom radius), which, in amphipathic helices, generally points towards the hydrophobic core
(Blundell et. al., 1983).  Cornette et. al. (1987) found that the dominant frequency for alpha
helices is at 97.5 degrees rather than 100 degrees, suggesting that the helix is slightly more open
than previously thought, with the number of residues per turn closer to 3.7 than 3.6.  Furthermore,
it is commonly known that hydrophillic residues do occur in the buried face of helices, and that
hydrophobic residues are sometimes exposed to the solvent.  These deviations from the ideal
pose a problem to any model-dependent study that rely heavily on the helical wheel or helical net
representation of the alpha helix.

This study takes an unsupervised machine learning approach to analyzing the Markov
dependency between residues in alpha helices.   An ideal helix assumption is used to aid the
design of model structure and to analyze the results, but is not directly incorporated in to the
model or used in parameter estimation.  The unsupervised, exploratory parameter estimation
approach allows data-dependent learning of parameters that capture not only the overall trend in
different classes of helices, but also any deviation from the trend.  Several different stochastic
models of alpha helices are explored, each of which assumes a different pattern of dependency
between nearby residues within the linear sequence.  A clustering method based on the
expectation-maximization (EM) algorithm is used to approximate the maximum-likelihood
parameters to these models, as well as to find the optimal classification of the data.  The models
are evaluated based on their maximum likelihood scores and their ability to classify helices into
groups of different levels of amphipathicity.

By exploring several different Markov models for the alpha helix, this study is able to
assess the importance of different inter-residue dependencies to the classification and
representation of helices.  What type of model is best for discriminating between amphipathic and
non-amphipathic helices?  In contrast, what type of model is best for representing alpha helices of
different degrees of amphipathicity?  We’ll see in the results section that the model that performs
the best for the former task may not perform as well for the latter task.  What is the simplest
model that is can capture the periodic signal in alpha helices and store that information in its
parameters?  We’ll see that, with a dependence window of only 3 residues, a model is capable of
capturing the periodicity of 3.6 residues in amphipathic alpha helices.  Using Monte-Carlo
simulations, we will attempt to answer the question, “How much information is really stored in the
model parameters?”  Finally, we’ll define a distance measure on model space and use it to
characterize the similarity between any two parameterizations of the same model. This allows us
to examine the nature of the likelihood function on the parameter space and to evaluate the
confidence of our EM parameter estimates.

Methods and Model Descriptions

Figure 1 shows the relative locations of five
linearly sequential residues on a helical wheel
projection.  Assuming an amphipathic helix, we would
expect that the hydropathy value of residue n would
correlate negatively with that of residue n-2, since
they are on opposite sides of the helix.  We would
also expect a positive correlation between the
hydropathy values of residues n and n-4, due to their
proximity in the helix wheel projection.  The
correlation between the hydropathy of residues n-3
and n-1 and that of residue n depends on the size of
the inaccessible face of the helix, and the position of
residue n relative to that face.  These are the
dependency information that we are trying to capture
in this study.  In all of the Markov models analyzed, a
certain dependency is assumed between the nth
residue and the n-1, n-2, n-3, and n-4-th residues,
with n running along the entire length of the interior of
the helix.  As shown in figure 2, the interior of the helix
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is defined to start 4 residues from the n-terminal end and 1 residue form the c-terminal end of the
protein sequence.  The rationale for this partitioning can be found in the analysis of Schmidler et.
al.  (2000), which shows that amino acid composition at positions 1, 2, 3, and 4 residues from the
n-terminal and 1 residue from the c-terminal differs significantly from the overall amino acid
composition.

To reduce the parameter space of the models, the Markov dependency at the helix
interior is specified in terms of hydropathy class instead of in terms of amino acid value.  Three
hydropathy classes are defined: hydrophobic, hydrophillic, and neutral.  The amino acids are
grouped into these three classes based on the Kyte-Doolittle hydropathy scale as shown in table
1.  If we assume that the distribution is multinomial and that each residue is probabilistically
dependent only on the previous two residues, then there would be 32 * 2 = 18 parameters in the
model, instead of  202 * 19 = 7600 parameters as in the case where the inter-residue dependence
is specified in terms of amino acid value.  Given the hydropathy class, the models assume that
the amino acid value follows a stationary multinomial distribution, the parameters for which must
also be estimated by the learning process.  The n- and c- terminal residues are assumed to be
independently distributed with their own distinct multinomial distributions.

AA
Code

Kyte-Doolittle
hydropathy

Hydropathy
class

Arg -4.5 Hydrophillic
Lys -3.9 Hydrophillic
Asn -3.5 Hydrophillic
Asp -3.5 Hydrophillic
Gln -3.5 Hydrophillic
Glu -3.5 Hydrophillic
His -3.2 Hydrophillic
Pro -1.6 Neutral
Tyr -1.3 Neutral
Trp -0.9 Neutral
Ser -0.8 Neutral
Thr -0.7 Neutral
Gly -0.4 Neutral
Ala 1.8 Hydrophobic
Met 1.9 Hydrophobic
Cys 2.5 Hydrophobic
Phe 2.8 Hydrophobic
Leu 3.8 Hydrophobic
Val 4.2 Hydrophobic
Ile 4.5 Hydrophobic

Table 1

Five different models are studied, of varying degrees of complexity.  The simplest model
(IID), which serves as control, assumes that each residue in the interior segment of the helix is
independent and identically distributed.   The model of the next level of complexity (D(n-
1))assumes that the interior residues are first-order Markov, (i.e. each n-th residue is dependent
only on the n-1-th residue, from which it is separated by an 100-degrees arc in the helical wheel
projection).  Two models are studied that assume second-order markovicity for the internal
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residues: one assumes dependence of each n-th residue on the n-1 and n-2-th residues (D(n-1,
n-2)), and the other assumes dependence on the n-1 and n-4-th residues (D(n-1, n-4)).  The
critical difference between these two models is that the residue n-2 is on the opposite side of
residue n in the helical wheel projection, while residue n-4 is on the same side.  Finally, the model
of the highest level of complexity (D(n-1, n-2, n-3)) assumes that the interior residues are third-
order Markov.  Table 2 summarizes the dependency assumptions  of the models.

Model
Acronym

IID D(n-1) D(n-1, n-2) D(n-1,n-4) D(n-1, n-2,n-3)

Dependence None n, n-1 n, n-1, n-2 N, n-1, n-4 n, n-1, n-2, n-3
Relationship
Assumed as
Projected on
to the
Helical
Wheel

Table 2

Model parameters are estimated using the EM algorithm for mixture distributions (see
Cheeseman et. al. 1988a & 1988b or Duda & Hart for more in-depth description of the algorithm).
The prior probability distributions for all of the parameters are assumed to be Dirichlet.  The
number of clusters c is considered a fixed, known value.  The models used for all clusters abide
by the same Markov assumption, but through the learning process gain different parameters.
The true classifications for the protein sequences are not known, as according to the
unsupervised learning paradigm.  The pseudo code of the EM algorithm is as follows (D =
complete data set of helix sequences, M = mixture model):

1. Randomly initialize model parameters according to the prior distribution.
2. Repeat until gain in P(D|M) between iterations is smaller than some predefined

threshold:

(i) Classify helices according to the current model parameters.  That is, for
each helix h and cluster i, calculate P(i|h).

(ii) Use the resulting classification to re-estimate the model parameters for
each cluster that would maximize the conditional likelihood of the
complete data set given the mixture model (i.e. P(D|M)).

3. Report final model.

To alleviate the problem of local maxima, random restart is employed to explore more of the
parameter space.  Hence, every time a final model is reported, steps 1, 2, and 3 are repeated
with a different random initialization of the model parameters.  For this study, random restart is
employed 30 times before a best model is selected.

In order to better understand the parameter space, a distance measure must be defined
to describe the degree of similarity between any two model parameterizations.  If, after every
random restart, the EM algorithm reports a model that is a negligible distance away  from the
previously found models, then it is highly possible that most of the parameter space has already
been explored, and that the globally optimal model is among the current set of reported models.
The distance measure also makes possible the evaluation of the complexity of the parameter
space by allowing a quantitative comparison between models of different likelihood scores.     The
distance measure for IID models is defined as follows:
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Let p1(x, k) = P(amino acid x, class k) according to model 1
p2(x, k) = P(amino acid x, class k) according to model 2

x ∈  {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}
k ∈  {1…c}

Then d(model 1, model 2) = maxqD(p1(x, k)||q(x, k)),
where q is any permutation of p2(x, k) with respect to k,
and D(p||q) is the Kullback Leibler Divergence

The distance measure for the other models are defined similarly.  The idea is to find the pair-wise
match between the classes of the two models so as to minimize the KL-divergence between the
corresponding distributions.

Three methods are used to assess the amphipathicity of a single or a set of helices: The
“Eisenberg plot”, the hydrophobic moment, and the size of the hydrophobic face.  As described in
the introduction, The “Eisenberg plot” is a plot of the hydrophobicity of the protein sequence in
frequency domain.  Given the hydrophobicity values of each residue in the helix {hi}i = 1…n, the
“Eisenberg plot” plots {fω}ω=0…180, the Fourier transform of {hi}i = 1…n.  The frequency vector {fω} is
calculated as follows:

fω = { [ ∑k=1…n hk cos(kω)]2 +[ ∑k=1…n hk sin(kω)]2  }1/2 ,  

ω = 0…180

A peak in the “Eisenberg plot” around 100 degrees had often been used as a good indicator of an
amphipathic helix.  Note that although the Eisenberg plot shows the strength of any periodic
signals within a helix, it does not give much information about size of the hydrophobic face.

To calculate the hydrophobic moment and the size of the hydrophobic face of a helix, its
residues must first be mapped from the linear sequence representation into the helical wheel
representation.  For an alpha helix with less than 18 residues, linear interpolation is used to fill in
the missing values in the wheel.  For an alpha helix with more than 19 residues, the average is
used at position(s) where there is more than one residue.  The hydrophobic moment is calculated
via the method described in Segest et. al. (Segrest, Jones & Anantharamaiah, 1992):  For each
residue projected on to the wheel, multiply the unit vector that extends radially from the wheel’s
center to the position of the residue on the wheel’s circumference by the hydropathy value of the
residue.  The magnitude of the sum of the vectors is the helical hydrophobic moment.  The size of
the hydrophobic face is measured by the length of the longest stretch of non-hydrophillic residues
along the wheel.  For example, if the helix is non-amphipathic and composed completely of
hydrophobic residues, then the hydrophobic arc-length would be almost 18.  On the other hand, if
the helix is completely exposed, it is most likely that the hydrophobic arc length would be close to
0.  Amphipathic helices have arc-length between these two extreme values.

A simple Monte-Carlo type approach is used to access the statistical significance of any
feature of the models:  For each sequence in the database, randomly permute its residues while
conserving their relative frequencies.  Then, use the same EM algorithm to train models using this
scrambled database.  Any periodicity or between-class divergence that is encoded by the
parameters of models trained in this way must have been due to chance.  Many such randomized
models were generated and used to estimate the mean and standard deviation of the null-
distribution for the feature.  A critical assumption is made that the null-distribution is normal, and
the z-test is used to test the significance of the feature.
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Results & Discussion

I. Overall assessment of model performances.
Figure 3 plots the Akaike Information Criterion (AIC) (Akaike, 1974) of the different model types
for increasing number of classes.  The AIC for each model is calculated as follows:

AIC = 2* [(number of parameters) – (model likelihood)]

While the conditional likelihood score
increases indefinitely with the increase of the
number of classes and the order of
markovicity, the AIC criterion penalizes
models with large parameter spaces.  Thus,
the AIC offers a quantitative way of
comparing the performance of models with
different numbers of parameters.  As
expected, Figure 3 shows that IID models
perform the worst, followed by D(n-1).  The
AIC curves for D(n-1, n-2, n-3), D(n-1, n-2)
and D(n-1, n-4) are relatively the same.   This
indicates that the extra n-3-rd residue
considered by the D(n-1, n-2, n-3) model
does not improve its performance, by the
standard of the AIC.  Also noticeable is that
the higher order models are paraboloid in
shape.  This is because these models have a
larger number of parameters per class, and
thus their model complexity increases much
faster than that of the IID or D(n-1) model.
The AIC curves for all of D(n-1, n-2), D(n-1, n-
4), and D(n-1, n-2, n-3) reach a minimum at 4
classes, suggesting that any model with more
than four classes may be over-
parameterized.

I. Amphipathic signals in helical
sequences can be captured by any Markov
model of order greater than 2.  Although the
alpha helix has 3.6 periodicity and helix-
stabilizing interactions have been detected
between residues as far as 4 apart, the
results of this study indicate that even a
second-order Markov model can detect
amphipathic signals in helices.  Figure 4
shows the mean Eisenberg plot for a D(n-1,
n-2) 4-class model.  The between-class
difference in the mean modulus at 100
degrees has been tested to be statistically
significant (P-value > 0.99)

The plots in figure 4 were calculated
using real protein sequences from the original
database.  Hence, we can not yet infer that
the strong signal at 100 degrees is in fact
encoded in the model itself.  How much
information is actually captured and stored in
the model parameters? Five-thousand
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“artificial” amino acid sequences are simulated Monte-Carlo-style using each of the class-
conditional-distributions of the model being analyzed.  Any statistically significant periodic signals
found in this simulated set must have been encoded by the model parameters, and thus “learned”
by the model through the EM algorithm.  Figure 5 shows the results of these simulations for D(n-
1), D(n-2), and D(n-1, n-2, n-3).

The Eisenberg Plots for all of the class-distributions within the D(n-1) model are flat and
show no dominant frequency.    For the D(n-1, n-2) model, the classes have noticeably different
plots, with that of classes 1 and 3 having statistically significant peaks at approximately 97
degrees.  The plots suggest that class 1 contains the most strongly amphipathic helices, class 2
contains the non-amphipathic helices, and class 3 is somewhere in between the two.  These
results are statistically significant (P-value > 0.99)  The results for the D(n-1, n-2, n-3) model are
even better, as the difference in peakedness between the class plots is even more noticeable.
This has been expected, since as the order of the model increases, more information can be
stored in its parameters, and thus we would expect it to perform better.

It may at first seem counter-intuitive that a Markov model of only second order can
capture signals of periodicity greater than 3.   The fact that this is possible can be shown through

a trivial exercise.  Consider the deterministic
second order Markov chain with the following
transition rules:

If the two residues at the start of the sequence
are both hydrophobic, then the simulated
sequence would have the following pattern:

hydrophobic
hydrophobic
hydrophillic
hydrophillic
hydrophobic
hydrophobic
hydrophillic
hydrophillic
hydrophobic
hydrophobic
hydrophillic
hydrophillic
…..

Figure 6 shows the projection of this simulated
sequence on to the helical wheel.  For this
simple, deterministic case, the simulated
sequence has a periodicity of 4 and the
projected helix wheel diagram clearly shows
an amphipathic helix.  The D(n-1, n-2) model
parameters for amphipathic helices are simply
a probabilistic version of the above trivial
case, with added noise and three hydropathy
classes instead of two.  By the position of the
residues n, n-1, and n-2 on the helical wheel,
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it is logical that if the hydropathy class of residue n correlates negatively with that of residue n-2,
then the resulting sequence would be amphipathic.

II. The D(n-1, n-2) model is more effective for discriminating between different amphipathic
helices, while the D(n-1, n-4) model is more effective for discriminating between amphipathic and
non-amphipathic helices.  As noted in the Methods section, the critical difference between D(n-1,
n-2) and D(n-1, n-4) is in the location of the n-2-nd and the n-4-th residues on the helical wheel,
relative to that of the n-th residue.  While residue n-2 is on the opposite face of residue n, residue
n-4 is on the same face.  Furthermore, the arc spanned by residues n, n-1, and n-2 is 11 residues
long, while that spanned by residues n, n-1, n-4 is only 6 residues long.  Thus, intuitively, D(n-1,
n-4) should not be able to differentiate between an amphipathic helix with inaccessible face of
size 6 residues from that with inaccessible face of size more than 6 residues, because its
projected helix wheel “reading frame” is only 6 residues long.  However, although the projected
“reading frame” of D(n-1, n-4) is smaller than that of D(n-1, n-2), it is more detailed, since 3
residues within this size-6 frame (50% of the residues) is observed.  By contrast, the projected
reading frame of D(n-1, n-2) is larger (11 residues) but less detailed (3/11 = 27% residues is
observed).  The effect of this difference on classification results is shown in table 3.

Model Type D(n-1, n-2) D(n-1,n-4) D(n-1, n-2, n-3)
Mean Arc Length Class 1: 6.10 Class 1: 6.46 Class 1: 5.91

Class 2: 6.93 Class 2: 6.70 Class 2: 7.23
Class 3: 7.83 Class 3: 7.19 Class 3: 8.14

Mean Hydrophobic Moment Class 1: 12.95 Class 1: 11.14 Class 1: 10.92
Class 2: 13.39 Class 2: 11.25 Class 2: 11.31
Class 3: 14.21 Class 3: 14.46 Class 3: 14.22
Class 4: 14.51 Class 4: 15.00 Class 4: 15.18

Table 3

Three models are analyzed (D(n-1, n-2, n-3), D(n-1, n-2), D(n-1, n-4)), each assuming the
presence of 4 statistically separable classes of helices.  The results for D(n-1, n-2, n-3) serve as
control, since the Markov dependency assumed by this model, when projected on to the helical
wheel, is the sum of that assumed by D(n-1, n-2) and D(n-1, n-4).  Each model found three
statistically significant (P-value > 0.98) amphipathic helix classes and one non-amphipathic
helical class. The between-class difference in mean hydrophobic-face size for models D(n-1, n-2,
n-3) and D(n-1, n-2) are statistically significant, but that for model D(n-1, n-4) is not.  This result
suggests that the triplet n, n-1, n-2 is more informative for distinguishing between helices of
different degrees of amphipathicity.  However, comparison of the hydrophobic moment produced
by the two models reveals that D(n-1, n-4) is more effective at capturing the periodicity
information in helices.  The hydrophobic moment produced by the class-conditional-distributions
of D(n-1, n-4) cover a wider range and are better separated from each other.  The most
amphipathic class found by D(n-1, n-2) has hydrophobic moment of 14.51, while that found by
D(n-1, n-2) has hydrophobic moment 15.00.  These results have borderline statistical significance
(P-value > 0.93).  Thus, further testing is needed to confirm their validity.

IV.  The likelihood functions for the non-zero order Markov models have many local maxima.  As
described in the methods section, 30 iterations of the EM algorithm were performed, each from a
different random initialization of parameters.  Each run generates a “best”  parameterization of the
given model,  among which the parameterization that gives the overall highest likelihood score M*
is selected.  The distance between the other reported models and M* is calculated and plotted
against the decrease in their likelihood scores.  Figure 7 shows the plots for the IID and D(n-1, n-
2) models.
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The data suggests that the likelihood
scores for the IID models are inversely related to
their distance from the maximum likelihood score.
All of the 30 IID models are within a short distance
away from the maximum likelihood model.  This
suggests that the IID likelihood function is
unimodal, and that the best model that we have
found so far is indeed the global optimum.
However, the data for D(n-1, n-2) shows no
significant relationship between model score and
model distance.  The reported models are also
much further apart than in the IID case.  Thus,
comparatively, the likelihood function for D(n-1, n-
2) is much more complex and most likely contains
many local maxima over the parameter space.
Based on this fact, 30 iterations of random restart
may not nearly be enough to guarantee that the
entire parameter space has been explored.  This
is expected, since usually the number of iterations
needed to explore the entire parameter space
scales exponentially with the number of
parameters.

Conclusion

This study presents a method that uses Markov models to classify alpha helices in to
amphipathic and non-amphipathic classes.  The second- and third- order Markov models found
using the EM algorithm conferred interesting insights on the inter-residue dependence in
amphipathic alpha helices, despite the fact that they may not be globally optimized.  Considering
that the models were trained using unlabeled data, the fact that they were able to find classes
with significant differences in amphipathicity is evidence that low-order Markov amphipathic
signals in helix sequences are quite strong.

The helix classification models found in this study can be incorporated into the secondary
structure prediction algorithm designed by Schmidler. et. al.  They can also be used to detect the
amphipathic helix motif in protein sequences.
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