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1 Introduction

Phylogeny is the problem of recreating the evolutionary history of a set of
biomolecules from the information about the similarity of these molecules.
The evolution mostly proceeds as a hierarchy or a tree. Given a phylogeny
tree for a set of biomolecules, we can say that the biomolecule at the root
of the tree evolved through mutation or speciation into each of the slightly
different biomolecules at the leaves of the tree while going through the form
of biomolecules at the intermediate nodes in the tree.

Multiple sequence alignment and other forms of data give information about
the similarity or resemblence of a set of biomolecules. Such data is used to
reconstruct the phylogeny of the biomolecules. There have been various
methods, metrics and models used to study this problem and recreate the
phylogeny. There are some very good methods that have been around for
quite a while now, but recently there is a lot of interest in creating new
methods that recreate the phylogeny from minimal information. In this
report, we discuss some of the recent developments in phylogenetic methods.
Until recently, the methods that reconstruct phylogeny assumed that the
data had very restrictive properties like ultrametry or additivity. Moreover,
most of the methods have serious problems scaling for a large number of
biomolecules or taxa. Also, since accuracy in recreating the phylogeny is
of utmost importance, the quality of the data had to be extremely good.
Of late, new methods have come out which could use available data and
generate more accurate phylogenies. These methods can work even with
short sequence lengths while relaxing stringent constaints on the property
of the data. Here is a summary of the methods that are studied in the report
and their relative performances.

1.1 Summary

The first set of methods are used for the phylogeny problem in DNA se-
quences or protein molecules. They assume that a similarity score for each



pair of biomolecules is given in the form of a matrix under a general markov
model. Further, the methods can work well as long as the matrices supplied
are at least approximately additive (discussed further).

Method Complexity fast perf. on | perf. with rt.
converging? | large taxa | of evolution

Dyadic O(n°logn) yes unknown unknown

Closure

Witness O(n'logn) yes unknown unknown

Antiwitness

Neighbor O(n’logn) | no (unknown) poor poor

Joining

Harmonic O(n® + In) yes good good

Greedy Triplets

Disk-Covering O(n®) yes good good

NJ+MP

Here n is the number of biomolecules or sequences (taxa) and [ is the se-
quence length.

The second set of methods are meant for studying the phylogeny problem
for gene order rearrangement. This assumes that the evolution in a genome
happens when a substring of genes are rearranged within the genome to
create a new one. Under this model of genome evolution, we compare the
following methods.

Method Metric Speed perf. with | perf. with
# of genes | # of taxa
IEBP Distance | use Neighbor | accuracy accuracy
Joining reduces reduces
Exact-IEBP || Distance | use Neighbor | accuracy accuracy
Joining reduces reduces
EDE Distance | use Neighbor | accuracy accuracy
Joining reduces reduces
MPBE Parsimony | comparable constant constant
accuracy accuracy
MPME Parsimony slow constant constant
accuracy accuracy

1.2 Analysis and Potential Improvements

Most of the good phylogenetic methods are heuristics for solving the NP-
Hard phylogeny problem. A lot of effort is put into proving fast convergence
of phylogenetic methods. The efforts have been fairly successful and now we
have very good fast methods that can produce phylogeny trees with good
accuracy. However, simple heuristics like Neighbor-Joining are still very



competitive with these very sophisticate methods. For a small problem,
with limited number of taxa, Neighbor-Joining method is as good as any
other top of the line method. The new methods have opened up avenues for
studying a big set of taxa having reasonable length sequences.

The methods studied are based tightly on the kind of evolutionary model
assumed. As we see, the model used for protein sequence evolution cannot be
appropriate to study chromosome evolution which is predominantly through
gene rearrangement. We have a different model to study those evolutions.
Going ahead, there may be various other models that come up to suite
the case at hand. There could be models to study evolution that adhere to
some grammar in the sequences such that evolution produces only sequences
compatible to certain grammatical rules. Under such models, the problem
may turn out not to be NP-Hard, in which case elegant solutions would be
available.

More complex models can be evolved out of existing ones by combining them.
DNA molecules undergo some rate of mutations of the nucleic acids while
some amount of inversion or transposition of the genes. Thus a combination
of Jukes-Cantor and Nadeu-Taylor may be of interest.

There is probably some inherent limit on the size of the set of taxa that
can be studied in one group. Certain molecules show increased mutation in
a set of taxa during some period. The rate of evolution of the same set of
molecule is not the same through out the history. So also, a group of species
that were formed showed evolution with respect to some set of molecules
and not with others. This means that we can use a set of molecules to study
only a set of species. We may need to switch the set of molecules to study
a different set of species. Now comes the problem of combining these trees
such that we can create a bigger tree with all these species. For this, we can
use the techniques used in calculating consensus trees.

The perspective in some of the phylogeny methods waver from the require-
ment of accuracy to the speed in solving the problem. More strict way
of calculating accuracy need to be studied and experiments performed on
existing methods on how they fare against the new metric.

We look at the tabulated methods in some detail while understanding the
assumptions and conditions necessary for the use of these methods. We
outline some distance based method and take a look at why the sequence
length is an important criteria in designing a method. We study some quar-
tet based methods and how they perform followed by breakpoint phylogeny
methods and their performance.



2 Distance Based Methods

2.1 Convergence: Fast Convergence and Absolute Conver-
gence

Let D be an n x n distance matrix. A method M is said to converge if
it generates the true phylogeny tree for sufficiently long sequences at the
leaves. The method is said to be combinatorially consistent if M(D) =
D whenever D is additive. The method is continuous at d for L., metric
(max|d;; — d;j|) if for all € > 0, there exists a § > 0 such that Lo (d,d ) < &
implies Loo (M (d), M(d)) < € [1].

A method that is both combinatorially consistent and continuous on a neigh-
borhood around every additive matrices is said to be reasonable. We want
to show some bounds and conditions on reasonable methods for convergence.
Bounds are defined for a method based on the length of the sequences used
at the leaves. To see why the length of the sequences are important, consider
a tree with n leaves. There could be (2n — 5)!! tree topologies for a binary
tree with n leaves. If a method has to generate the true tree topology from
a given set of sequences, the number of possible tree topologies that those
sequences could generate has to be atmost one. The total number of n leafed
trees that can be generated by sequences of length k is 2"¥ assuming the
sequences are binary. Thus we need at least the condition (2n — 5)!! < 2"F
for a method to be able to recreate the true tree.

For a given distance matrix d, computed under some distance model, we
call it statistically consistent if each of the distance estimates d;; converges
to the true value \;; under the CF model (see Appendix), as the sequence
length increases, with probability 1. This is true for General Markov model
of which CF model is a part.

Theorem 1: Let (T, M) be a model tree in the General Markov model. Set
Aij = Zeepij Ae- Assume that f, g are fixed with 0 < f < A, < g for all
edges e € T'. Let € > 0, § > 0 be given. Then, there is a constant C' such
that, if the sequence length exceeds

OlogneO(g.diam(T)) (1)

then with probability at least 1—0, we have Lo (d, \) = mawz;;|dij — Nij| < €,
where d is the statistically consistent distance matrix, A is the matrix of true
distance, n is the number of leaves and diam(T') is the topological diameter
of T

If the term in equation 1 is polynomial or polylogarithmic in n, then the
method is said to be fast converging.

Definition 2: A phylogenetic reconstruction method ® is absolute fast-
converging (afc) for the General Markov model if, for all positive f,g,e€,
there is a polynomial p such that, for all (T, M) in the General Markov



model, on set S of n sequences of length at least p(n) generated on T', we
have Probability[®(S) =T] > 1 —e.

Definition 3: A phylogenetic reconstruction method ® is relative fast-
converging (rfc) for the General Markov model if, for all positive f,g,e€,
there is a polynomial p such that, for all (7, M) in the model, on set S
of n sequences of length at least p(n) generated on T', we have Probability
[®(S,A(f,9)) = T]> 1 — ¢, where A(f,g) denotes an oracle that provides
information about f and g.

Most of the fast converging phylogeny methods are relative fast converging.
That is their convergence for a given sequence length depends upon the val-
ues of the parameters f and g. Some of the absolute fast converging methods
known are the Short Quartet methods and the Disk-Covering method.

A general technique for building the true phylogeny tree is to generate a
set of good trees based on some criteria and evaluating each generated tree
for the most optimal among them. Usually, the criteria used for generating
good trees is to use some artificial parameter (specific to each method) that
constraints the problem to give a more deterministic solution. This will be
evident when we discuss some of these methods.

3 Neighbor-Joining Method

This method is among the first phylogeny methods to build consistent trees
from additive matrices. The method has been around since 1987 and still is
quite reliable in terms of accuracy and running time. [2]. Given an n X n
distance matrix d, the method proceeds by identifying a pair of leaves as
neighbors and joins them to a parent node, continuing the process until
only two nodes are left. At every step the distance matrix is revised to
"normalize” the distances from a node based on the average distance of the
node from other nodes. At any given step, the two neighbors (i and j)
selected are the pair of nodes which are closer than any other pair based on
the current distance values. When these two nodes are joined, a new node
k is created such that k is the parent node of 7 and 7 and the distance of k
is the average of the distance (d;y, + djm, — d;5)/2 for all other nodes m in
the set.

It has been proved that for additive matrices, the nodes with minimal dis-
tances are indeed the neighbors. The reliability of Neighbor-Joining method
to cases where the distance matrix is not strictly additive is also proven in
literature. Thus Neighbor-Joining method is one of the most robust, simple
and efficient methods known in phylogeny. However, this method is not
proven to be fast converging and needs sequences of exponential length to
show convergence (this is the current known upper bound).



4 Short Quartet Methods

Short Quartet methods analyze simple small subtrees with four leaves to
construct the true phylogeny tree [1]. See Appendix for definitions on Quar-
tets and other tree properties.

4.1 Dyadic Closure Method

This method tries to build the phylogeny tree by computing the closure set
for a given set of quartets by infering the rest from the given set [3]. Given
a dissimilarity distance matrix d of size n x n, a binary search over g € {d;;}
is done such that:

Four Point Method (FPM) is used to compute the set of quartet splits from
d for quartets with d-width bounded by ¢. Let this set be A,. Then, the
method builds the closure set cl(A4,) called dyadic closure of A, based on
the following two rules:

Rule 1: Given two quartet trees ij|kl and jk|lm, infer the quartet trees
ijlkm and ik|lm

Rule 2: Given two quartet trees ij|lk and ij|km, infer the quartet tree
ijllm.

So, cl(Ay) is the minimal set of quartet trees which contains A, and is
closed under the above two rules. It has been shown that the closure can be
computed in O(n®).

A search through the values of ¢ is made such that the cl/(A,) contains
exactly one tree on every quartet. The unique tree that comes out of this
closure is returned as the final answer; otherwise the method returns failure.
The Dyadic Closure Method is shown to have a running time of O(n5logn)
and is fast-converging for polylogarithmic length sequences.

4.2 Witness-Antiwitness Method

Witness-Antiwitness method is an improvement over Dyadic closure method
as it gives an answer in more cases and also runs faster [4].

4.2.1 Witness-Antiwitness Tree Construction Algorithm, WATC

Given a set () of quartet splits WATC outlines how to construct a tree T'
consistent with Q.
Stage I

e Start with every leaf of T' defining an edi-subtree (edge-deletion-induced
subtree).

e While there are at least four edi-subtrees, do:



— Form a graph G on vertex set given by the edi-subtree, and with
edge set defined by siblinghood.

x Case 1: there are more than four edi-subtrees: if the graph
has at least one edge, select one and make the roots of the
edi-subtrees, which are the vertices on the edge, children of
a common root and replace them by the new subtree. If no
component edge exists, return Fasl

x Case 2: there are exactly four edi-subtrees: Let the four
subtrees be x,y,z,w. If the edge set of the graph G is
{(z,v), (z,w)}, then construct the tree T" formed by mak-
ing the edi-subtrees x and y siblings, the edi-subtrees z and
w siblings, and adding an edge between the roots of the two
new edi-subtrees. If not, return Fail.

Stage 11

e Verify that T is consistent with Q. If so, return 7T, else return Fail.

4.2.2 Witness-Antiwitness Method, WAM

WATC gives us the tree T if one exists for a given set ) of quartet splits.
WATC is guaranteed to reconstruct the binary tree T if the set @) is T-forcing
on T. Hence, some search strategies are developed so that we can always find
a T-forcing quartet split on which to invoke the WATC algorithm.

Let ), be the quartet set bounded by a d-width of w. A sequential search
strategy is to invoke WATC on each @, w € {d;;}. This has a search space
of O(n?). A better search strategy is an O(logk) sparse-high search,
where k is the sequence length.

The running time for WAM based on sequential search is O(n2k + nSlogn)
and on sparse-high search is O(n?k 4+ n*lognlogk).

5 Harmonic Greedy Triplets Method

Harmonic Greedy Triplets Method [5] is a fast converging method with poly-
nomial running time that always produces a tree. The algorithm proceeds
constructively by building the tree at each step selecting a leaf not yet in the
tree. When a leaf is selected, a new internal node is added such that it forms
the center of the best triplet formed by the new leaf and two other leaves
already in the tree. A triplet is a set of three node z, y and z such that their
center p is at a distance dyp = (dyy + dpz — dy.)/2. The triplet selected at
each time is by the greedy approach of selecting a triplet with the new leaf
node that has the maximal average closeness value. The closeness value for
a set of three leaves is the harmonic mean of the pair-wise closeness values.



While selecting the triplet with the maximal closeness value, it is ensured
that the closeness value is above a certain bound decided by the algorithm.
The running time for this algorithm is shown to be O(n® + In?), where n is
the number of sequences and [ is the length of the sequences used.

6 Disk Covering Method

Disk Covering Method or DCM is a meta-method that can be used in con-
junction with other phlogenetics methods. It is a very general phylogenetic
method booster that improves the accuracy of the phylogenetic methods
used with it. Unlike the Short Quartet methods, DCM always reconstructs
a tree with better performance [6].

Here, let us discuss DCM-Buneman method, that is Buneman method (see
Appendix) used with DCM.

6.1 DCM Method

The method has two phases. In the first phase, it takes a phylogenetic
method and a dissimilarity matrix and produces a collection of trees. In the
second phase, the most appropriate tree is selected from this set.

6.1.1 Phasel

Given a distance matrix D, a set S of sequences and a phylogenetic base
method @, the Phase I produces a set of trees from maximal cliques on a
threshold graph as below:

e For each w € D;;

— Let Ey, = {(i,5)|Dij < w}. Construct the threshold graph,
TG(D,w) = (S, Ey).

— If TG(D,w) is not connected, then let T3, be the star tree. Put
Ty in the set of trees and continue for next in loop.

— Triangulate TG(D, w), minimizing maz{D;;|(i, j)addedto(S, E,)},
thus producing the triangulated graph TG*(D, w). (the heuristic
step)

— Compute the maximal cliques C1,Cy, ..., C; of TG*(D,w) where
[ <n. For each i, 1 <i <1, let t; = ®(C}).

— Merge the subtrees ¢; using the strict consensus merger to produce
the tree Tj,. Add T}, to the set and continue. (Strict consensus

merger method contracts a minimum set of edges in each tree in
order to make them identical on the subtrees they induce. The



strict consensus of the induced subtrees is the maximally resolved
tree that is a common contraction of the subtrees).

e return the set of trees {Tj,|w € {D;;}}

6.1.2 Phase II

In Phase II, we return the most resolved tree Ty, (the one with the most
internal edges), and if a tie exists, it is broken by choosing the one associated
with a higher w.

It has been shown that DCM-Buneman is fast converging. Later on, an im-
provement to this approach was suggested. This used Short Quartet Support
method to replace phase II of DCM. This method DCM* has theoretical
guarantee of absolute fast convergence if the phylogenetic method used was
at least relative fast converging [1].

6.2 Short Quartet Support Method

Short Quartet Support method decides the best tree T among a set of trees
generated from a given dissimilarity matrix D over a set of sequences S.

o for each set of four sequences from S, compute the neighbor-joining
quartets g; let () be the set of all such quartets

e Return 7; from the set of trees such that the support for 7; with
respect to Q, s(7;, Q) is maximum (see Appendix for the definition of
support). Break the tie, if one exists, by selecting the smalllest i.

7 Performance Comparison

The methods studied above can be compared for various parameters like
complexity, behavior of a method under short, long or very long sequences,
behavior under varying number of sequences in the analysis etc. The metric
biologists are most concerned with is the accuracy of each method. That is
how closely does the tree generated by each method resemble the true tree.
There is no true tree to compare for real sequences found in nature. But
the accuracy of a method is judged based on some simulated evolution of a
model tree and then using methods to regenerate the tree and comparing
how close the generated tree is to the model tree. The quatification of
accuracy is done by the Robinson Foulds score (RF) (see Appendix).

7.1 Performance of the Quartet based Methods

Dyadic closure, witness-antiwitness and disk closure methods were studied
by researchers [7] [8] [9] and they found that disk closure method (DCM*) in



conjunction with Neighbor-Joining (NJ) method performed the best among
them. This is denoted as DCM™*-NJ. Base phylogeny methods were com-
pared with the DCM-boosted version and it was found that DCM-boosted
methods always outperfomed the base methods. Later studies comparing
DCM*-NJ, Harmonic Greedy Triplets method (HGT) and NJ were con-
ducted. It was observed that for a given set of taxa, as the sequence length
increased, the accuracy of DCM*-NJ and HGT improved in relation to NJ.
At smaller sequence lengths (< 4000), NJ outperformed the other two. It
was also observed that DC'M*-NJ performed better than HG'T, but overall,
the gain in performance of these methods was not significant compared to
NJ even for longer sequences.

Following these results, more experiments were done by changing the DCM
method slightly. In the Phase II of DCM method, the criteria used to
pick the final tree in case there is a tie is changed to pick a tree with the
maximum score s(7), where s is the number of thresholds w such that all
quartets of diameter w agree with T. This method is named DCM-NJ+TS
(TS for threshold support). Other variants were DCM-NJ+ML and DCM-
NJ+MP with the tie in Phase II being broken by the maximum likelihood
and maximum parsimony trees respectively.

It was observed that DCM-NJ+TS consistently performs at least as well
as DCM*-NJ. DCM-NJ+MP and DCM-NJ+ML performed equally well
in all the test and they outperformed DCM-NJ+TS. Comparing DCM-
NJ+ML/MP, the best of DCM methods with HGT and NJ shows that
DCM-NJ-ML/MP outperformed NJ; and NJ outperformed HGT in experi-
ments with varying sequence lengths (0 - 8000) for a fixed taxa size of around
100.

Similar experiments conducted with varying the taxa size (50 - 1600) for
a fixed sequence length of 1000 shows that for low branch lengths, DCM-
NJ-MP/ML outperforms NJ and HGT. The performance of NJ consistently
degrades as the taxa size increases and at taxa size of 1600, HGT has better
performance than NJ. Also, for higher branch lengths, the performance of
NJ degrades faster while HGT and DCM-NJ+MP /ML continue to perform
at almost constant accuracy.

8 Breakpoint Phylogeny

Hitherto we have been discussing the construction of phylogeny trees by
looking at DNA or protein sequences of a set of organisms. The uderstand-
ing being that the protein underwent some amount of mutation as speciation
happened. These mutations were assumed to be point mutations where one
nucleotide or amino acid changes into a different one with some probability.
There are other kinds of changes that take place that are of interest to biolo-
gists. One such is the rare genomic changes of large-scale mutational events
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in genomes that cause rearrangements including gene duplication or change
in gene order. Researchers have studied such genomic changes in chormo-
somes (linear or circular ordering of genes) [10]. The kind of rearrangement
of interest are inversions, transpositions and inverted transposition (see Ap-
pendix for definition).

8.1 Generalized Nadeau-Taylor Model

This model assumes that inversion, transposition and inverted transpositions
are the three types of events that cause genome rearrangements so that all
genomnes retain equal gene content. Further, the number of each of the three
types of events obey a Poisson distribution on each edge of the phylogeny
tree. The relative probabilities of each type of event are fixed across the tree
and the events of a given type are equiprobable. Concisely, this model can be
represented as a triplet (T, {\¢}, (71, yr, v17)), Where the triplet (yr, yr, vr7)
defines the relative probabilities of inversions, transpositions and inverted
transpositions [11] [12].

8.2 Breakpoints

Consider two genomes A = a1, a9, ...,a, and B = by, b, ..., b, on the same
set of genes {g1,92,...,9n}. We say a; and a;;; are adjacent in A. If two
genes g and h are adjacent in A but not in B, they determine a breakpoint
in A. The breakpoint distance is the number of breakpoints in A relative to
B and is equal to the number of breakpoints in B relative to A [13].

The problem in Breakpoint Phylogeny is, given a set of n genomes, recon-
struct the phylogeny tree that minimizes the breakpoint distance at every
edge of the tree. This has been shown as an NP-hard problem for the
simplest case of three linear genomes by reducing this median problem to
traveling salesman problem with m cities where m is the number of genes
in the given genomes. An approach to reconstruct the phylogeny tree was
conceived based on this idea. The outline of the method is as follows:

e Generate all tree topologies for a tree of n leaves

e cach tree is given an internal node label through a heuristic iterative
procedure that repeatedly finds the median of three neighboring labels.

e the median for three labels is computed by solving the corresponding
traveling salesman problem.

e select the tree with the minimum breakpoint distance.

This constitutes the BPAnalysis algorithm [14].
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There have been attempts to convert the breakpoint phylogeny into a dis-
tance based phylogeny problem through the use of suitable metrics that
convert the number of breakpoints, inversions or transpositions into true
evolutionary distances on the edge of a tree. Once we compute distances
between every pair of genomes in this way, we can use any of the distance
based method to reconstruct the phylogeny tree. There is extensive lit-
erature about various such metrics and demonstrates the relevance of the
metric by using Neighbor-Joining method to reconstruct the tree.

Some of them include, IEBP, Exact-IEBP and EDE. IEBP or Inverting the
Expected BreakPoint distance method approximates the expected break-
point distance obtained after £ random events in the generalized Nadeau-
Taylor Tree. Using this, given two genomes, we can estimate the true
evolutionary distance (t.e.d.) between them by selecting the number of
events most likely to have created the observed breakpoint distance. The
Exact-IEBP improves the accuracy by providing an exact calculation of the
expected breakpoint distance [11]. EDE, Empirically Derived Estimator
method estimates the t.e.d. by inverting the expected inversion distance
[15].

There are other methods that are based on parsimony. MPBE or Maximum
Parsimony on Binary Encodings [16] translates every genome into a binary
sequence, where each site from the binary sequence corresponds to a pair
of genes. The site takes a value 1 if the corresponding genes are adjacent
in the genome or it take the value 0. Thus for n genes, we have C(n,2)
sites in the binary sequence. From these sequences, the hamming distances
for each pair of genomes is computed which is used to reconstruct the tree
using maximum parsimony. The other parsimony based method is MPME
or Maximum Parsimony on Multistate Encodings [15]. In this method, an
n genes genome is translated to a sequence of length 2n such that for every
1, 1 <1 < mn, site ¢ takes the value of the gene immediately following gene ¢
and site n 4 ¢ takes the value of the gene immediately following gene —¢. So
the circular gene (g1, —g4, —9g3, —g2) becomes the sequence (-4, 3, 4, -1, 2, 1,
-2, -3). This new sequence is then used to construct the parsimony tree.

8.3 Performance

All the above distance based and parsimony methods were used in a exper-
iment to test for their accuracy [15]. Neighbor Joining was used as the tree
construction method on all of the distance methods. It was found that EDE
was the best among the distance methods, coming close to the parsimony
methods. The parsimony method fared better than the distance methods in
general, with MPME being the most accurate though quite slow.
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9 Appendix

9.1 Different Distance Models
9.1.1 Jukes-Cantor

Jukes-Cantor model defines sequence evolution over a finite alphabet

A=A{a,...,an} (2)

An Evolutionary Tree T for A is a binary tree with n leaves and an edge
mutation probability p. for each tree edge e. Also p € [0,1 — 1/m] such that
there exists f and g such that for every tree edge e

0<f<p.<g<l—1/m (3)

Let a sequence of length [ at the root of the tree mutate at every edge
of the tree to give n sequences at the leaves. Each such sequence can be
represented as sq,...,5, € Al. At every edge e each s; remains unchanged
with a probability of 1 — p, and mutates with a probability of p./(m — 1)
for each different symbol [5].

The edge transitions can be efficiently represented as an m X m symmetric
matrix with the diagonal values being 1 — p, and non diagonal values being
pe/(m —1).

Jukes-Cantor model can be applied to nucleotide substitution (alphabet is
{A, C, G, T}) or for amino acid substitutions among others. Note that the
Jukes-Cantor matrix is symmetric and assumes that when mutation occurs,
it happens with equal probability of substitution to a different alphabet.
However, this may not be practical in the case of nucleotide substitution
where there could be a higher probabilty of substitution among purines or
among pyrmidines than a purine substituting a pyrmidine or the other way
around. This is taken care by the Kimura model [2].

9.1.2 Simplified Jukes-Cantor: Binary characters

Most of the phylogeny methods discussed here use a simplified version of the
Jukes-Cantor model with only two character. So, we have a 2x2 substitution
matrix at each tree edge and p, takes the value in the range [0,0.5].

This is sometimes called the Cavender -Felsenstein or Cavender-Farris Model
[17]. An equivalent definition of the Cavender-Farris (CF) tree is (T', {A¢ :
e € E(T)}), where )\ is the expected number of changes of a random site on
edge e where the random variable for the number of changes on each edge
is Poisson. It has been shown that A\, = 1/2in(1 — 2p.). CF trees are used
in proving fast convergence of sequences. This is also sometimes referred
as Neyman model in literature [3]. All these models belong to the General
Markov model.
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9.2 Distance Matrix Properties

The pairwise distances for the n sequences is given as an n X n matrix D.
Note that this matrix has all the diagonal elements zero and is symmetric.
Such a matrix is called a dissimilarity matrix [17].

9.2.1 Additive Matrix

Consider a tree T (like in CF model) with weights w, on each edge e. We can
define the distance between any two leaves as the distance d;; = >~ Py We;
sum of the weight on the edges along the path from i to j (where P;; denotes
the path from ¢ to 7). The nxn matrix constructed out of these d;; distances
will be a dissimilarity matrix. Such a matrix for which there exists a tree
with positive edge weights and the distances satisfying the equation above
is said to be an Additive Matrix.

It has been shown that given an additive n X n matrix, the unique tree
consistent with the pair wise distances can be reconstructed in O(n?) time.

9.2.2 Ultrametric Matrix

Ultrametric matrix is an additive matrix with a rooted tree such that the
distance from the root to all the leaves is equal. The molecular clock
hypothesis held that the phylogenies formed ultrametric trees as the rate
of mutation with time is a constant and hence the amount of mutation along
any path to a leaf should be the same.

9.3 Centroid Matrix

Centroid matrix is an additive matrix which can be realized by edge-weighting
a star topology (the root of the tree having an edge to each leaf).

9.4 Relationship between Additive, Ultrametric and Cen-
troid Matrices

Let D be an additive matrix and X be a centroid matrix. Then D + X is
an ultrametric matrix. This gives us a general strategy to obtain a nearby
additive matrix for a given distance matrix d. We compute a suitable cen-
troid matrix X and create a new distance matrix d = d + X. Using one of
the methods, we compute an ultrametic matix U close to d. From this we
compute the required additive matrix D = U - X and then use this additive
matrix to reconstruct the phylogeny tree.

9.5 Definitions for Quartet trees

A Quartet is a set of four leaves i, 7, k, | from a given tree T', such that
they can induce a subtree in T.
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D-width of a quartet is the maximum of the pairwise distances D;; for the
four leaves, given an additive matrix D for the tree.

A Short Quartet around an edge e of a tree T' is a quartet with leaves in
each of the four subtrees around that edge of minimum D-width. The set of
all such short quartets for all the edges in the tree is denoted by Q(T).

Let T be a fixed tree leaf-labelled by the set S of n sequences, ) a fixed set
of quartets on S, and D the distance matrix on S. The support of 7" with
respect to ) denoted by s(T,Q), is

maz{l|(q € QandD — width(q) <1) = q € Q(T)} (4)

For a fixed set of quartets (), given distance matrix D, @, is defined as
Qu ={q € Q : D-width(q) < w}

9.6 Four Point Method

Four Point Method (FPM) Given a 4x4 distance matrix d, return the
set of splits ij|kl which satisfies d;; +dy; < min{d;, +dj;, dy+d;;} [3]. FPM
can return one, two or three splits for each quartet based on whether the
minimum is unique, two of them are same or all three are same respectively.
If we use FPM on a truely additive distance matrix D, we will get unique
split for each quartet and from the set of splits return by FPM, we can
reconstruct the phylogeny tree uniquely in polynomial time. But, in most
practical cases, the distance matrix is not truely additive and FPM may
generate multiple splits for some quartets. Generating a tree from this set
of quartet splits is hard since there could be conflicting splits that do not
converge to the same tree.

9.7 Buneman Method

This method by Buneman, starts by infering topology of quartets using Four
Point method (FPM) for a given dissimilarity matrix d. From this set of
quartet splits @), a mazimally resolved tree is constructed satisfying the con-
dition:

For all quartets {i,75,k, 1}, if T restricted to i,7,k,! induces a binary tree
(instead of a star), then the tree in @ on 4,7, k,[ is the same binary tree.

Let e be an edge in 7. Deletion of the edge e from the tree 71" creates two
rooted subtress 717 and T,. These are called edge-deletion-induced or edi
subtrees. Consider that the leaves are numbered from 1 to n for the tree T'.
For each edi-subtree £, we define the unique leaf which is the lowest numbered
among those closests topologically to the root of t as representative of t and
is denoted as rep(t).

For each (n — 3) internal edge of the n-leaf binary tree T', we pick a rep-
resentative quartet {i,j,k,l} such that the deletion of the edge and its end
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points leaves behind four rooted subtrees and each 1, j, k,[ is the representa-
tive for each of these subtrees. Note that by definition, every representative
quartet is a short quartet. Each representative quartet can be given a split
according to the split of the subtrees each representative came from. The
set of these representative quartets is denoted as Ryp. We have

Ry C Qshort(T) - Q(T) (5)

where Qport(T') is the set of short quartet splits realizable for the tree T'.
It has been shown that Ry is consistent with a unique tree 7', that is, all
the quartet splits in Ry is valid for tree 7" and that is the unique tree for
which it is true.

Also, if Ry C @, then ) can only be consistent with the tree T'.

So, for any @ such that Ry C @ C Q(T') would mean that if @ is consistent
with some tree, the tree is unique. The closure set used by Dyadic closure
method had this property. Note, however that ) could be inconsistent, in
which case there would be no tree consistent with Q.

Definition: Let 7" be a binary tree and @ a set of quartet splits on the
leaves of T'.

e () has the witness property for T if, whenever ¢; and ¢y are sibling
edi-subtrees of T and T'—t; — t5 has at least two leaves, then there is a
quartet split in @, uv|wz such that u € t1, v € ty and {w, x}N(t;Uty) =
(). This quartet split is called the witness to the siblinghood of ¢; and
to.

e () has the antiwitness property for 7' if, whenever there is a witness
in @ to the siblinghood of two edi-subtrees ¢; and ¢5 which are not
siblings in 7', then there is a quartet split in @ pg|rs such that p €
t1, 7 € toand {g,s} N (t; Uty) = 0. This quartet split is called the
antiwitness to the siblinghood of ¢; and t».

Definition: A set ) of quartet splits is said to be T-forcing if there exists
a binary tree 7' such that

1. Ry CQ CQ(T).

2. Q has the antiwitness property for T.

9.8 Definitions of rearrangements in Breakpoint Phylogeny

Let the genomes being studied be composed of genes from a set G =
{91,92,...,9n} of genes. Each genome is an ordering (circular or linear)
of some multi-subset of these genes. Also, each gene can take either ori-
entation and be positive (g;) or negative (—g;). A circular genome can
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be represented as a linear genome under the implicit assumption that the
permutation closes back on itself. The canonical representation of a cir-
cular genome is the linear representation where gene 1, g1, is at the first
position with positive sign. Thus a circular genome (g1, g2, g3) is same as
(—g1,—93,—g2), but the first representation is canonical.

Let X be a genome with signed ordering g1,92,...,9x. An inversion be-
tween indices ¢ and b, for ¢ < b, produces a genome with linear ordering

g1,92,--+y9a—1,—9by —9b—15-++, ~YGa, Jo+15---, 9k

A transposition on the linear or circular ordering acts on three indices a,
b, ¢ with @ < b and ¢ ¢ [a, b], picking up the substring g4, ga+1,---,9gp and
inserting it immediately after g.. Thus the genome X is replaced by

91,925 ---y9a—1,9b+15---5,9¢:9a>- -+, 9by Ge+1y - - - 5 Gk

An inverted transposition is a transposition followed by an inversion of
the transposed substring [16].

9.9 Calculating Accuracy of phylogenetic methods

If T is a model tree and T" is an estimation of the model tree by some phy-
logenetic method, we have

e Let e € E(T) be an internal edge of T, and let 7, be the bipartition
of the set of sequences S induced by deleting the edge e from 7'. Let
C(T) = {me : e € E(T)} be the set of all such bipartitions for 7" and
similarly let C(T") = {m : e € E(T")}. These sets are called character
encodings of T" and T’ respectively.

e The false positives are those bipartitions in FP = C(T') — C(T),
and the false negatives are those bipartitions

e false negative rate is defined as |[F'N|/|E;(T')| and false positive
rate is defined as |F'P|/|E;(T)|, where Er(T) is the set of internal
edges in 7T

Robinson Foulds score (RF) is defined as the average of false negative
and false positive rate [17]. Most performance studies on phylogeny recon-
struction methods have used this score as the metric for finding accuracy of
various methods.
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