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Abstract— Classification of a newly discovered protein into a family of proteins enables the 

determination of its function. The eMOTIF system identifies conserved modular domains that 

confer functionality or structure to proteins and allows classification of proteins into families 

based on the conserved domains a protein contains. A program called multeeMOTIF has been 

developed which analyzes eMOTIFS and determines the conditional probabilities of their 

occurrences to find pairs of eMOTIFS that occur together a percentage of the time. The proteins 

that match one eMOTIF compose a large super-family of proteins and proteins that match each 

additional eMOTIF compose smaller and smaller sub-families. Based on how many and which 

eMOTIFS an unknown protein matches, it can be assigned to the appropriate sub-family. The 

more eMOTIFS matched, the more specific the family assignment will be. Those pairs of 

eMOTIFS that always occur together or occur together a high percentage of the time are 

observed to be from alignments of the same protein functionality 83% of the time. This may 

allow assignment of function to alignments of unknown function and consequently proteins 

belonging to such alignments. 

INTRODUCTION 

Identification of the function of newly discovered proteins typically involves determining 

the family to which the protein belongs. Once the family is known, the function of the protein 

can be postulated to be similar to that of the other proteins in the family. This is because proteins 

with similar sequences fold into proteins with similar structure and similar structures perform 

similar functions. Several popular methods are based on global sequence similarity that makes 



use of position-specific scoring matrices to characterize the general nature of a protein and the 

family it belongs to. The eMOTIF system, on the other hand, identifies conserved modular 

domains that confer functionality or structure to proteins. This approach allows classification of 

proteins into families and sub-families based on the conserved domains a protein contains. 

Using multiple characteristics can identify a protein more precisely than using only one. 

Databases such as PRINTS use groups of motifs to build characteristic signatures. The multiple 

motifs provide biological context that can be used to assess the validity of identification. 

Similarly, multiple eMOTIFS may be used to together to increase the number of subfamilies 

available for classifying a protein. Here, pairs of eMOTIFS that occur together with high 

probabilities are found based on their conditional probabilities. Often times both eMOTIFS in a 

pair are different components of the same overall functionality. Each pair of eMOTIFS composes 

a subfamily of proteins found by either eMOTIF alone. 

METHODS 

The eMOTIF-MAKER program was applied to the BLOCKS+ database dated June 10, 

2000 and version 28.0 of the PRINTS database to generate the eMOTIFS. The eMOTIFS were 

then run at an expectation of 10-2 against the subset of protein sequences from SWISS-PROT 

version 39.0 that did not contain B, J, O, U, X, or Z. The results consisted of 44 979 unique 

proteins that were matched by 136 451 eMOTIFS. The eMOTIFS were derived from 15 043 

unique alignments, so multiple matching eMOTIFS were derived from the same alignment. The 

format of these results  was as follows: 

Each eMOTIF was listed on one line as: 

>expectation of the eMOTIF scanning for this eMOTIF|specificity of the 
eMOTIF|sensitivity of the eMOTIF|accession number of the parent alignment of 
the eMOTIF|descriptive name of the alignment|eMOTIF regular expression 



 
Each such line was followed by a list of proteins it matched, one per line as: 

Swiss-Prot ID|Swiss-Prot accession|matching sequence region |start index|stop 
index 
 

Such a file listing each eMOTIF and the proteins it matched was provided as input to a 

program called multeeMOTIF. multeeMOTIF was written in Perl to take such an input file and 

determine the motifs that always occur together. Because the data sets are large, multeeMOTIF 

operates in stages and generates various intermediate files to allow restarting the process even if 

it is prematurely terminated. The intermediate files are text files with fields separated by 

commas. 

In the first stage, multeeMOTIF builds an index and a reverse index from the eMOTIF 

and protein identifiers extracted from the input data file. This allows easy identification of the 

eMOTIFS that matched each protein. An eMOTIF that was found more than once in a protein is 

counted as only one match. In this stage, each eMOTIF is assigned a numerical identifier that 

will be used in the remainder of the intermediate files and output. A file mapping the assigned 

identifier to the eMOTIF expression, description, and parent alignment is generated as well. In 

the next stage, multeeMOTIF processes each protein and generates all unique combinations of 

eMOTIFS matching it. To compute the conditional probabilities, it is necessary to know all the 

valid combinations of eMOTIFS. Using this procedure rather than taking all possible 

combinations of all the eMOTIFS saves much work since not all of the nC2 combinations 

actually exist. In this data set, only 69.2 x 106 of the possible 9.3 x 109 eMOTIF combinations 

(0.7%) are actually found in the proteins. 

In the third stage, multeeMOTIF calculates the probability P(A) of each motif, the joint 

probability P(AB) of each combination of two motifs, and the two conditional probabilities, 

P(A|B) = P(AB) /P(B) and P(B|A) = P(AB) /P(A), for each combination of two motifs. Finally 



multeeMOTIF finds all the pairs that satisfy P(A|B) = 1 <= K*P(B|A) where K is a user specified 

probability factor. If K = 1, then only those motifs that always occur together are returned. If K > 

1, then motifs whose probability of co-occurrence is less than 1 are returned. The results are 

placed in a text file with each line representing a motif combination in the following format: 

motif A,motif B,P(A|B),P(B|A) 

These results were imported into Microsoft SQL Server along with an index of the motifs 

and their parent alignments and descriptions to allow fast running of complex queries. The SQL 

query used to determine the number of motif pairs derived from different alignments was: 

SELECT motifa, LEFT(a.description, 40), motifb, LEFT(b.description, 40)  
FROM matches_1, motifs a, motifs b 
WHERE matches_1.motifa = a.motif AND matches_1.motifb = b.motif  
      AND a.accession <> b.accession 
 

The SQL query used to determine the number of motif pairs derived from different 

alignments with different functions was: 

SELECT motifa, LEFT(a.description, 40), motifb, LEFT(b.description, 40)  
FROM matches_1, motifs a, motifs b 
WHERE matches_1.motifa = a.motif AND matches_1.motifb = b.motif  
      AND a.accession <> b.accession 
      AND NOT (a.description LIKE '%'+LEFT(b.description,7)+'%' OR  

   b.description LIKE '%'+LEFT(a.description,7)+'%')  
 

To determine the number of motif pairs derived from different alignments where one of 

the motifs was of unknown function, the following WHERE clause was appended to the above 

query: 

AND (LOWER(a.description) LIKE '%unknown%' OR  
     LOWER(b.description) LIKE '%unknown%')  

RESULTS 

At a probability factor of 1, 211 693 pairs of motifs occur together. Since a probability 

factor of 1 means P(A|B) = P(B|A) = 1, these are motifs that always occur together. Of these, 

182 724 pairs, or about 86%, are of motifs derived from different alignments. Though they were 



from different alignments, in many of the pairs, the motifs had descriptions that were similar or 

identical, as can be seen in Table 1. Filtering out such pairs yields 30 864 pairs in which the 

motifs have different alignment descriptions, as listed in Table 2. In the 182 724 pairs that 

always co-occur derived from different alignments, there are 1190 pairs in which both motifs are 

from alignments of “unknown function” and 273 pairs in which only one motif alignment has a 

description of “unknown function”, as shown in Table 3. 

At a probability factor of 1.1, 275 165 pairs of motifs occur together. Thus 63 472 pairs 

do not always occur together but do occur with a greater than 1/1.1 = 91% probability. 225 925, 

or 82%, of the pairs are of motifs derived from different alignments. 37 711 pairs have different 

alignment descriptions and there are 288 pairs in which only one motif alignment has a 

description of “unknown function”. 

DISCUSSION 

As seen in Table 2, some of the descriptions, although not deemed similar by a simple 

comparator, in fact refer to similar functionality. Thus when using a probability factor of 1, at 

least 1-(30 864/182 724) = 83%, and most likely more than 83%, of pairs derived from different 

alignments are actually from alignments that have similar function. Since so many of the pairs 

are of motifs with similar functions, if we know the function of one motif, we can reasonably 

speculate the function of the other motif to be the same. Thus for the 273 motifs derived from 

alignments with unknown function, 83% or 226 of them can statistically be assigned a function 

correctly. Many of the proteins these motifs match are currently classified as “hypothetical”, as 

listed in Table 4, and the functions assigned to the alignment would help identify the function of 

the proteins. 



When the probability factor is increased to 1.1, more pairs are found because they don’t 

have to always co-occur, just most of the time. 82%, as compared to 86% when K = 1, of the 

eMOTIF pairs are derived from different alignments. Since eMOTIFS are generated by 

enumerating multiple motifs for the same alignment, some eMOTIFS will be subsets of other 

eMOTIFS. As the co-occurring criterion is relaxed, more of these subsets will be found. At least 

1-(37 711/225 925) = 83% of the pairs derived from different alignments are actually from 

alignments that have similar function. This rate is the same as when K = 1. Although the 

percentage of co-occurring pairs derived from the different alignments decreases as K increases, 

the percentage of pairs that are from alignments that have similar functions stays the same. 

At K = 1, using two eMOTIFS to identify proteins does not increase the specificity since 

the union of the sets of proteins containing each eMOTIF alone is the same as the set of proteins 

containing both eMOTIFS. By similar logic, the sensitivity will not change either. At K > 1, 

however, using two eMOTIFS will identify only a subset of the proteins found in the union of 

the sets of proteins containing either eMOTIF, thus increasing the specificity. When the 

eMOTIFS do not always occur together, the sensitivity may decrease since there are fewer 

proteins in the set containing both eMOTIFS than the set of proteins containing at least one of 

the eMOTIFS. 

Using multiple eMOTIFS improves diagnostic ability by determining not just whether a 

protein has one component that provides some functionality but whether it has several of the 

components that make up the necessary elements for that functionality. The more components, or 

eMOTIFS, that are matched, the more accurately the function of the protein can be pinpointed. 

Thus the proteins that match one eMOTIF can compose a large super-family of proteins and 

proteins that match each additional eMOTIF compose smaller and smaller sub-families. Based 



on how many and which eMOTIFS an unknown protein matches, it can be assigned to the 

appropriate sub-family. The more eMOTIFS matched, the more specific the family assignment 

will be. This is an improvement over using the PRINTS database directly since PRINTS, though 

it identifies the family a protein belongs to and how distant the protein is from the family, does 

not show how the families are organized into super-families and sub-families. 

 

Future Directions 

This work has only been a preliminary version of multeeMOTIF. There are several 

improvements that should be undertaken in the future. Among these are improvements to the 

implementation of multeeMOTIF. It is currently implemented in Perl and works with flat text 

files. Though the size of these files is extremely large (the various intermediate files take up over 

2 gigabytes of disk space), the performance is decent on a dual processor PIII server with a 

gigabyte of RAM. However, generation of the final list based on the user specified probability 

factor currently cannot be done fast enough for use with a web-based interactive query system. 

Thus the databases used by an interactive query system must be populated with lists pre-

generated using pre-specified probability factors. Future implementation should look at either 

using binary files or moving more stages of the process into an SQL server. 

Another issue that should be addressed in a future version is the current limitation of 

multeeMOTIF to two eMOTIFS. multeeMOTIF should support pairing 3, 4 or even more 

eMOTIFS, such that, for example, P(A|B) = P(B|A) = P(A|C) = P(B|C) = P(C|A) = P(C|B) = 1. 

While two eMOTIFS are better than one eMOTIF, even more eMOTIFS will further increase the 

ability to divide families into sub-families and pinpoint protein functionality more accurately. 



Additionally, the validity of the functions assigned to alignments and proteins needs to be 

verified to see if the statistically suggested 83% correctness holds. This can be done either by 

formulating a test set or by obtaining biological data about the true functionality of the proteins 

that were assigned functions. 

APPENDIX 
 
MOTIF A Alignment Description MOTIF B Alignment Description  
56896 Trehalase 93071 Trehalase 
15948 Adhesin family signature III 43528 Adhesin B signature V 
135049 Anion exchanger family signature VI 48197 Anion exchanger family 
 
Table 1. A few of the 182 724 eMOTIF pairs derived from different alignments that had 
descriptions that were similar or identical. 
 
 
MOTIF A Alignment Description MOTIF B Alignment Description  
88769 P2X3 purinoceptor signature VIII 2952 ATP P2X receptor 
135431 Homoserine dehydrogenase 94344 Aspartokinase 
131518 Plasmodium circumsporozoite protein 122391 CAP protein 
131734 Plant globin signature IV 131733 Leghaemoglobin 
 
Table 2. Several of the 30 864 pairs of eMOTIFS derived from different alignments that had 
different alignment descriptions. But as can be seen, even though the simple description 
comparator could not identify them, several of the descriptions indicate similar functionality. 
 
 
MOTIF A Alignment Description MOTIF B Alignment Description  
15501 Domain of unknown function 125231 Guanylate kinase 
75837 Calcium channel signature I 133997 Protein of unknown function 
111501 RNA methyltransferase trmA 5379 Domain of unknown function 
 
Table 3. Several of the 273 pairs of eMOTIFS derived from different alignments that have one 
eMOTIFS derived from an alignment of “unknown function”. 83% of the time both eMOTIFS 
are derived from alignments that have the same or similar function. Thus it is likely that the 
function of the unknown alignment in each pair is the same as the known alignment. 
 
 
Proteins Matched by eMOTIF 133997 (“protein of unknown function”): 
Q58124 Y714_METJA HYPOTHETICAL PROTEIN 
Q58736 YD40_METJA HYPOTHETICAL PROTEIN 
Q57758 Y310_METJA HYPOTHETICAL PROTEIN 
 
Table 4. Many of the proteins matched by eMOTIFS derived from alignments of “unknown 
function” are hypothetical proteins whose function is not known. Since the function of the 



alignment can be postulated by seeing which other eMOTIFS it co-occurs with, the function of 
these proteins may also be speculated. 
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