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Artificial Neural Networks and Hidden Markov Models for
Predicting the Protein Structures: The Secondary Structure

Prediction in Caspases

The protein structure prediction has been an active research area for the last
40 years or so.  The technological progress in computational molecular biology
during the last decade has contributed significantly to the progress we see
today.  The major goal of predicting protein structures underpins the correct
assumption that three-dimensional structures confer protein function.  The
linear amino acid sequences must transform to non-linear secondary structures
and then to tertiary and quaternary structures that are responsible for
biological functions.  Biological functions may remain similar or change in the
related organisms through the evolutionary process.  The theory of natural
selection predicts that evolution occurs by tinkering but not by inventing
(Jacob 1977).  This means, deletions, mutations, or any other changes
occurring in the linear ancestral protein sequence can cause changes in
biological structure and function in the descendants.  The problem is,
structures and biological functions are highly redundant and they are conserved
across the evolutionarily diverged organisms.  It is not uncommon to have
similar 3-D structures for proteins that show less than <30% sequence identity
in the pair-wise comparisons, adding further complications to predictions (Rost
1999).  Computationally, amino acid sequence is similar to a text string and
that string algorithms rooted in computer science can handle structure
prediction problem easily (Durbin et al. 2002).  The most prominent break
through in structure prediction research of the last decade can be attributed to
refined architectures provided by two important machine learning methods:
artificial neural networks (ANN) and hidden Markov models (HMM) (Rost 2002;
Karplus et al. 1998, 1999; Krogh et al. 2001).

In this report, first I briefly review ANN- and HMM-based structure
prediction methods covering literature from 1990 through 2002.  Then, I
present the results of applying four secondary structure prediction methods to
predicting structures of three caspases that are responsible for apoptotic cell
death in mammals.  The Medline MESH search path for “protein conformation”
along with “NN” or “HMM” is presented in Table 1.  In this report, I will cover
only the important ideas discussed in these and other relevant references.

Artificial Neural Networks (ANN)

Artificial neural networks were originally developed to model human brain
function.  ANNs are parameterized graphical models consisting of networks
with three prime architectures: recurrent, feed-forward and layered (Baldi &
Brunak 2001).  The recurrent architecture is more complex and it contains
directed loops.  The feed-forward architecture does not contain the directed
loops.  The layered architecture usually contains visible input and output layers
and non-visible hidden layers.  Feed-forward, layered architecture is more



3

commonly used in computational molecular biology.  Each layer may contain
one or many units.  The units in the input layer are connected to units in the
hidden layers, which in turn are connected to units in the output layer.  The
connections are associated with weights.  The number of units in layers is
determined by the problem at hand.  A good rule of thumb is that number of
units in the hidden layers is equal to half the sum of the number of input and
output units (Haykin 1994), but variations to this rule are very common.  ANNs
are powerful because they are capable of modeling extremely complex
biological functions yet they are relatively easy to use, as they can learn from
examples.  Well-trained ANNs can predict complex biological patterns,
structures, or functions of newly discovered sequences.  Depending on the type
of data, the structure prediction problem can be divided into two main
categories: classification and regression.  For example, observed secondary
structure data (Helix, Strand, Coil) can provide discrete information for
secondary structure classification.  The continuous hydrophobicity data can be
used to fit the regression equation.

ANNs used during the early days were called “black boxes,” because the
network architecture was neither trained properly nor evaluated on
representative sets of sequences.  Accumulated knowledge on network
implementation rules, specific knowledge-based training networks, and feeding
neural networks with evolutionary information for more than a decade (1990-
2002) dramatically increased the predictive ability of secondary structures
(Rost 2002).  For example, today’s best secondary structure predictive methods
have attained >78% accuracy.

Hidden Markov Models

Hidden Markov models are special cases of neural networks, stochastic
grammars and Bayesian networks (Baldi & Brunak 2001).  They can convert
multiple sequence alignments into position-specific scoring matrices (PSSM),
taking into account all matches, mismatches, and gaps in the alignment.  The
PSSMs in turn can be used for searching distance homologues of the query
sequence or for predicting protein structures (Eddy 1998; Karplus et al. 1998).
A set of 20-100 sequences is needed to train the HMMs (Mount 2001).  The most
general HMM takes into account all insertions, deletions, and matches that
appear in the related sequences and the associated transition probabilities to
generate PSSMs.  These matrices can be used for predicting secondary
structures (helix, strand, coil) or for modeling 3-D structures of proteins.  The
most important limitations of HMMs are that they need to be trained on a
larger set of sequences (say hundreds) to correctly identify distant homologues.
HMMs are unable to efficiently identify long-distance correlations between the
amino acid residues of a sequence (Eddy 1998).  Limitations of HMMs can be
overcome by using them in conjunction with ANNs in hybrid architectures.
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Three main methods for predicting protein structures

Functional native protein structures are usually three-dimensional (3-D).
Original 1-D protein sequence must fold into 3-D structure.  Prediction of 3-D
structure of a given 1-D sequence whose structure is not known is a non-trivial
task.  Prediction of 3-D structure is essential for designing rational drugs and
proteins to meet the needs of human health care (Sew & Fischer 2001).  Three
most important approaches for protein structure design are: (a) homology
modeling, (b) threading or fold recognition, and (c) ab initio.

Homology modeling is built on the principle that evolutionarily related 1-
D amino acid sequences would fold into similar 3-D structures.  So, if
evolutionary relationship of a new sequence (target) can be established with
another sequence (template) whose structure is known, a 3-D model for the
target sequence can be readily built.  When sequence similarity between the
target and template exceeds 30% or so, the homology modeling is usually
successful.  The homology modeling consists of aligning the target sequence
with the template proteins and copying coordinates of the matching residues of
the template to target.  The next step is building side chains and the regions
with loops.  Building side chains is generally more difficult than building loops.
Finally, the model should be optimized and adjusted to minimize steric clashes
between atoms.

When similarity between the target and template sequences falls below
30%, protein structures may still be similar but homology modeling would be
ineffective.  Under such situations, fold recognition or threading is the method
of choice.  In threading, a library of known folds is used to establish a
compatibility function between 1-D sequence and 3-D fold from the library,
taking into account the preferences of amino acids to different 3-D
environments.  Finally, this compatibility function will be used to thread the
target sequence into an appropriate 3-D fold.  Threading method would work
when the fold library can provide suitable 3-D fold to the target sequence.

Frequently, the fold library may not have a suitable fold for a newly
discovered sequence.  When this happens, threading does not work any more.
For cases when homology modeling or threading method becomes ineffective,
ab initio method is used.  Ab initio methods are computationally demanding.
They usually search the energy surface using Monte Carlo simulations, genetic
algorithms, or molecular dynamics.

Many computational methods that implement the above three structure
prediction approaches usually employ ANN or HMM-based architectures.  In
some cases, hybrid architecture of both ANN and HMM may be used.

Blind and manual evaluation of structure prediction methods

A plethora of protein prediction methods developed by different research
groups all over the world are now available on the Internet. The challenge is to
identify suitable methods that are truly superior in accurately predicting the
protein structures of interest.  Evaluation of these methods for performance



5

accuracy is not a trivial task.  In the recent years, such an effort has lead to a
development of a whole new area of research.  The evaluation effort has
developed into two interrelated philosophies: Critical Assessment of Structure
Prediction (CASP) initiated in 1994 and Critical Assessment of Fully Automated
Structure prediction (CAFASP) initiated in 1998.  Currently, several human
research groups assess the accuracy of prediction methods in the CASP group
and automated web servers assess the accuracy of prediction methods in
CAFASP.  As of October 2002, participants of CASP have met five times and
CAFASP thrice.  The most recent results of CAFASP3 and CASP5 are not yet
published.  As per previous assessments (CAFASP2 and CASP4), there was an
agreement between these two groups such that they both assess the accuracy
of the same prediction methods and compare their results with each other.
The main goal of CAFASP2 were to assess the performance of fully automated
servers for structure prediction, provide the assessment results to the
community of users, allow human groups to participate in the CASP for non-
automated predictions, and compare the results of CAFASP with CASP (Fischer
et al 2001).  According to CAFASP2 and CASP4 results, there is a considerable
agreement between these two assessments in terms of rank orders awarded to
the prediction methods.  Over 100 CASP human groups and >36 automatic web
servers participated in evaluating five main categories: fold recognition,
secondary structure prediction, contacts prediction, ab initio, and homology
modeling.

Dozens of Meta servers have been recently added to CAFASP3 and CASP5
assessments.  These servers essentially evaluate many servers and extract the
best prediction results.  For example a Meta server named ShotGun on 5 (3DS5)
is a consensus predictor uses the results of other servers such as FFAS, 3D-
PSSM, SHGU, FUGE and nGenTHREADER.  It compiles one model from models
produced by the 5 servers using parsing of partial structures (the complete list
of all servers can be found in http://bioinfo.pl/meta/servers.html).   3DS5 and
other consensus servers have ranked very high in most of the structure
prediction categories, essentially surpassing all individual servers. Another
ANN-based consensus server, Pcons, out performs any single server by
producing about 8-10% more correct predictions of folds (Lundstr_m et al.
2001).  The fundamental theme of the consensus servers follows the basic
assumption of the probability theory that all the relevant evidence must be
used in predictions.

The secondary structure prediction in caspases

Introduction

The secondary structure prediction could be useful for predicting some aspects
of protein function: identifying putative structural switching regions not known
before (Kirshenbaum et al. 1999), or for establishing correlations between local
secondary structure and global conditions (Young et al. 1999).  In addition,
secondary structure prediction could be useful for identifying membrane
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proteins, coiled-coil regions and domains, classifying through secondary
structure content, and finding binding sites (Rost 2000 and references therein).

In this section I briefly introduce caspases, describe four secondary
structure prediction methods, and apply them to predicting secondary
structures in caspases.

Caspases are a family of intracellular cysteine endopeptidases.  They
play a key role in inflammation and mammalian apoptosis or programmed cell
death. Procaspses in most cells exist in latent forms and contain three distinct
regions in their structures: N-terminal pro-domain, middle large subunit, and C-
terminal small sub-unit (Lee et al. 1997; Rano et al. 2000 ; Watt et al. 1999;
Z_rnig et al. 2001).  The maturation of caspases includes homodimerization and
proteolytic processing when pro-domain is cleaved off, and the small and large
subunits are cut at internal aspertases by autoproteolysis or by other caspases.
The active caspases consist of two large (~20 kDa) and two small (~10 kDa) sub
units.  Caspases can be grouped into four subfamilies (Wolf & Green 1999): (i)
cytokinin processors (caspases-1, 4, 5, 11, 12, 13, 14), (ii) apoptic initiators
(caspases-2, 8, 9, 10), (iii) apoptic executioners (caspases-3, 6, 7), and (iv)
invertebrate caspases.  All caspases contain an active site pentapeptide
sequence (QACXG), where X could be R, Q, or G.  The cysteine within the
active site is directly involved in substrate catalysis.  In this study I analyze two
chains (large, A and small B) each from casp-1, casp-3 and casp-8 (Figure 1).

Figure 1.  Three-state (alpha-helix, beta-sheet, and coil) Protein Data Bank
structures of casp-1 (1IBC; 2.73 Å), casp-3 (1GFW; 2.80 Å), and casp-8 (1QTN;
1.2 Å).  All three structures belong to alpha and beta class (a/b), mainly with
parallel beta sheets (beta-alpha-beta units), of the SCOP structural
classification.  Casp-3 is in complex with an isatin sulfonamide inhibitor and
casp-8 is in complex with the tetrapeptide inhibitor ace-ietd-aldehyde.  In all 3
proteins, the large chain A begins with blue coil and end with green coil.  The
small chain B begins with red coil and end with yellowish-green coil.  In all 3
cases, the pentapeptide active site (QACXG) is located at the junction of the
last beta-sheet near its arrow and the beginning of the last coil in chain A.
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I applied four secondary structure prediction methods (PHDsec, PSIPRED,
SAM-T02, PROF King) to analyze two chains (A and B) each from casp-1, casp-3
and casp-8 proteins.  A brief description of these methods is presented in Table
2. Architectures of all four methods use ANNs.  In addition to ANN, PROF King
utilizes seven GOR classifiers and SAM-T02 server employs HMMs in hybrid
architecture.  These four methods represent a period of more than a decade of
technological advances in the area of protein secondary structure prediction.
The prediction accuracy was stalled at 60% level for decades prior to the
introduction of PHDsec method in 1993 (Rost and Saders 1993). The PHDsec
method for the first time utilized evolutionary information systematically from
multiple sequence alignments and increased the prediction levels to 70%.  Six
years later the prediction levels jumped up to 76% thanks to Jones’ (1999)
PSIPRED method that uses iterated PSI-BLAST profiles as input data set instead
of multiple sequence alignments.  SAM-T02 method takes advantage of both
ANN and HMM principles (Karplus & Hughey 1999). PROF King method can be
viewed as a consensus prediction method, because it uses seven GOR-based
predictions along with ANNs (Ouali & King 2000).  Here I try to answer the
following four questions related to the secondary structure prediction in
caspases:

1 )  Which prediction method is most suitable for predicting secondary
structures in caspases and why?

2) Does prediction accuracy for alpha helices is better or worse than for
beta sheets?

3 )  What is the influence of conserved blocks on secondary structure
prediction?

4) Is there any relationship between the size of the individual secondary
structure (residue content) and the prediction accuracy?

Also, I will briefly discuss the strengths and limitations of the four
prediction methods.

Materials and Methods

First, I obtained the amino acid sequence data for chains A and B of casp-1,
casp-3 and casp-8 from NCBI website (http://www.ncbi.nlm.nih.gov/) (Box 1).
The EMotif search of the Blocks+ database retrieved four conserved blocks in
chain A and one in chain B (IPB001309 A-E).  Secondly, I applied four prediction
methods (Table 2) to each of the 6 sequences individually and generated their
3-state predicted secondary structures.  Then, I obtained the observed
sequence  da ta  f o r  t he se  cha in s  f r om the  PDB
(http://www.rcsb.org/pdb/index.html).  PDB gives an 8-state secondary
structure data.  I converted the 8-state structure data into 3-state data
([HGI]>H for alpha helix; [EB]>E for beta strand; [.ST]>C for coil, loop or other
type of structure).  I also designated unresolved PDB structure to be ‘C’.
Finally, the sequence data, 3-state observed structure data and 3-state
predicted structure data were organized into three columns matching
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structures to residues in each row.  A total of 24 data sets (3 proteins x 2
chains x 4 methods) were created.  In addition, I obtained data on the number
of helices and strands, and their residue content for each of the three proteins
from PDB.

Statistical Analysis

I used the SOV server (http://predictioncenter.llnl.gov/local/sov/sov.html) to
analyze each of 24 data sets. The analysis gave both Q3% and SOV% values.  The
Q3 index (Qhelix, Qstrand, Qcoil) gives percentage of residues predicted
correctly as helix, strand, or coil for all three conformational states. It is the
fraction of number of residues correctly predicted from the number of all
residues.  Q3% measure of overall number of residues predicted correctly can
be misleading. It shows how well individual residues are predicted but not how
well secondary structure elements are predicted. To make evaluation of
secondary structure prediction more structurally meaningful, in this study I
used a segment overlap measure (SOV%) that was first proposed by Rost et al
(1994) and further described and evaluated by Zemla et al (1999).  I also
estimated averages and standard deviations for these and other variables when
appropriate.

Results and Discussion

Overall and individual secondary structure prediction accuracies for chain ‘A’ in
casp-1, casp-3 and casp-8 from four prediction methods are presented in Table
3. The PSIPRED method gave the highest (84.7%) overall average Q3 value and
the PROF King method gave the lowest value (77.8%), with other two methods
being intermediate. PSIPRED predicted helices and strands with nearly equal
Q3 accuracy, but PHDsec, SAM-T02 and PROF King predicted strands better
than helices. Overall accuracies for SOV were 6-7% greater for PSIPRED than for
other methods. Depending on the prediction method, SOV values for strands
were 3-9% greater than the SOV values for helices.  These results suggest that
beta strands were predicted with slightly greater accuracy than alpha helices in
‘A’ chains of the three caspases.

The Q3 and SOV values for the secondary structures in chain ‘B’ of
caspases-1, 3 and 8 are presented in Table 4.  Overall Q3 value was highest for
PROF King (73.8%) and lowest for PHDsec (68.5%).  Q3 values for helices were
nearly 2- 4 times greater than Q3 values for strands, while Q3 values for coils
stayed intermediate between these values. Overall average SOV value was
75.6% for PSIPRED method and 58.1% for PHDsec, with values for other two
methods being intermediate.  SOV values for helices were 96.8% for PHDsec,
PSIPRED and SAM-T02 and 87.2% for PROF King method.  SOVs for helices were
nearly 2 to 5 times greater than SOVs for strands.  Both Q3 and SOV values
clearly suggest that helices were predicted with much greater accuracy than
strands in chain ‘B’ of the caspases.
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Of the four methods, PSIPRED is slightly better than all other methods.
Among the remaining three, SAM-T02 and PROF King are slightly better than
PHDsec.  The superior accuracies for PSIPRED may be because PSI-BLAST
alignments are based on pair-wise local alignments that created reliable local
alignments, and iterated profiles may have increased the sensitivity of PSI-
BLAST (Jones 1999).  The estimated overall Q3 and SOV values for caspases
from different methods either overestimated or under estimated relative to
those shown in Table 2.  This difference is mainly due to small sample size (6
chains per method) of this study.

Overall prediction accuracy for chain ‘A’ is expected to be better than
prediction accuracy for chain ‘B’, because on average, chain ‘A’ is 97-residues
(or 2.36 times) longer than chain ‘B’ (Table 5).  Overall Q3 and SOV values are
respectively 9.5% and 5.8% greater for chain ‘A’ relative to values for chain ‘B’.
While strands were predicted with slightly better accuracies in chain ‘A’,
prediction accuracies for chain ‘B’ were 2-3 times greater for helices than for
strands.

 The difference in total chain lengths alone can’t explain the slightly
biased prediction accuracy for strands in chain ‘A’ or highly biased prediction
accuracy for helices in chain ‘B’. The prediction bias towards beta strands in
chain ‘A’ can be explained based on the distribution of secondary structural
elements within the conserved blocks.  The eMotif search identified 4
conserved blocks in ‘A’ chains of caspases (Box A).  All except one strand
reside within these blocks, suggesting that conserved secondary structures
were better predicted than relatively less conserved structural elements in
chain ‘A’.  Highly biased prediction accuracy for helices, however, cannot be
explained either by total chain length or by the distribution of helices with the
conserved block in chain ‘B’.  In fact only one-half of one of the two helices is
present within the conserved block, yet helices predicted with superior
accuracy than the strands.  The number of helices and the number of strands,
and their percent residue content in chains ‘A’ and ‘B’ of caspases-1, 3, and 8
are presented in Table 6.  The beta strands are twice as many as alpha helices
in all chains.  The residue content of alpha helices and beta- strands of chain
‘A’ are about the same.  The residue content of alpha helices is 2.22 times
greater than residue content of beta strands in chain ‘B’.  Simply, alpha helices
are much longer than beta strands in chain ‘B’.  The longer alpha helices in
chain ‘B’ are the cause for their greater prediction accuracy by all prediction
methods.

The total chain length, presence of conserved blocks, distribution of
secondary structures with the blocks and the length of secondary structure
itself influenced the prediction accuracy of the methods used.

Strengths and limitation of the prediction methods

PHDsec was the first method to systematically use multiple sequence
alignments for training ANNs.  This scientific breakthrough pushed the
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prediction accuracy levels for secondary structures from 60% to 70% (Rost &
Sanders 1993, 1994).   Besides using new knowledge from multiple sequences,
it can also handle long-distance interactions that usually increase the
prediction accuracy.  The major limitation of PHDsec is that multiple sequence
alignment is time consuming and it is difficult to move the PHD server to
another site.  The alignments usually correlate to sequence diversity.  The
diversity of the training set influences the prediction accuracy.  This method
uses only one line of evidence from the alignments to train the networks.

PSIPRED was the first method to take advantage of position-specific
scoring matrices generated by the powerful PSI-BLAST search algorithm for
predicting protein secondary structures.  The PSI-BLAST search generates
greater local alignment reliability.  This radical idea helped increasing the
prediction accuracies from 70 to over 76% level.  This method can also handle
long distance interactions.  The major limitation is that, like PHDsec, it uses
only one line of evidence coming from the profiles for training networks.  The
greater accuracy of this method could be attributed to homologous tertiary
structures rather than more efficient use of all available data.

SAM-T02 makes use of theories from both ANN and multi-track HMM.
Although HMM can’t handle long distance correlations, the ANN part of
architecture helps to handle this problem.  The complicated hybrid
architecture of this method may mask the simple biological insights.

PROF King uses different background theories and different lines of
evidence relevant to prediction (for example, 7 GOR methods and ANN).  It
even assumes that long-distance interactions may not be important and their
importance may have been overstated in the past.  PROF King strictly uses local
information.  The complicated non-linear rule-based statistics (too many rules)
of PROF King may mask the biological meaning.  Combining different
architectures usually adds to complexity and may adversely affect clarity of
biological conclusions.

Conclusions

The secondary structure prediction methods have now reached close to 80%
accuracy level, which is as good as accuracies coming from actual structure
determinations using traditional methods.  Further improvement is somewhat
difficult but not impossible.  Technological advances in many areas are
expected to enhance the prediction accuracy even further.  Refining the
background evolutionary knowledge used for learning and improving the
learning techniques, ever increasing database size, developing organism
specific networks, and striking effective balance between the multitudes of
methods used and preserving biological sense in the consensus methods should
all help advancing this area even further.  Because consensus predictions use
different background theories and different lines of evidence relevant to
prediction, they are expected to be superior over individual prediction
methods.  The next wave of revolution for increased prediction accuracy is
expected to come from superior consensus methods of today and tomorrow.
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Table 1.  Search history for the PubMed MeSH terms.
#6 Search #2 AND #4 Limits: Publication Date from

1990 to 2002, English
8

#5 Search #2 AND #3 Limits: Publication Date from
1990 to 2002, English

42

#4 Search Hidden Markov Model Limits: Publication
Date from 1990 to 2002, English

242

#3 Search Neural Network Limits: Publication Date from
1990 to 2002, English

5913

#2 Search "protein conformation" [MESH] AND predict
Limits: Publication Date from 1990 to 2002, English

1031

#1 Search "protein conformation" [MESH] Field: All
Fields, Limits: Publication Date from 1990 to 2002,
English

89039

Table 2.  Description of the secondary structure prediction methods used in
this study.

Secondary Structure Prediction MethodsAttribute
PHDsec1 PSIPRED2 SAM-T023 PROF4 King

Architecture 3-layered,
feed-forward
ANN

2-layered,
feed-forward
ANN

ANN and
multi-track
HMM

ANN and linear
discrimination
classifiers

Input data Multiple
sequence
alignments in
place of
earlier single
sequences

Iterated PSI-
BLAST
profiles
rather than
sequences

Multiple
alignments of
sequences

From a cascade
of multiple
classifiers
(GORs) and PSI-
BLAST

Non-homologous
test data set

130 protein
sequences

187 unique
protein folds

?? 496 protein
sequences

Evolutionary
information?

Yes Yes Yes Yes (Also tried
without)

Overall
accuracy (%)

70 76 ?? 77

Literature Rost & Sander
(1993)

Jones (1999) Karplus et al.
(1999)

Ouali & King
(2000)

Websites for the prediction methods:
1http://cubic.bioc.columbia.edu/predictprotein
2http://bioinf.cs.ucl.ac.uk/psiform.html
3http://www.cse.ucsc.edu/research/compbio/HMM-apps/T02-query.html
4http://www.aber.ac.uk/~phiwww/prof/
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Table 3. Prediction accuracies (Q3%, SOV%) of the secondary structures in
chain ‘A’ of Casp-1, Casp-3, Casp-8 from four prediction methods (PHDsec,
PSIPRED, SAM-T02, PROF King).
Method Protein N, aa Q3% SOV%

All Helix Strand Coil All Helix Strand Coil
PHDsec Casp-1 194 82.0 69.1 81.8 88.7 76.6 81.8 87.9 71.6

Casp-3 147 79.6 73.7 72.2 86.3 73.3 82.6 78.9 67.0
Casp-8 164 79.9 66.0 82.9 86.6 64.5 74.5 94.3 52.7

AVG 80.5 69.6 79.0 87.2 71.5 79.6 87.0 63.8
±STD 1.3 3.9 5.9 1.3 6.3 4.5 7.7 9.9

PSIPRED Casp-1 194 84.5 78.2 78.8 89.6 82.3 84.2 85.6 80.5
Casp-3 147 83.0 81.6 72.2 89.0 74.2 80.3 80.6 68.8
Casp-8 164 86.6 83.0 82.9 90.2 81.8 87.2 94.3 75.3

AVG 84.7 80.9 78.0 89.6 79.4 83.9 86.8 74.9
±STD 1.8 2.5 5.4 0.6 4.5 3.5 6.9 5.9

SAM-T02 Casp-1 194 84.0 81.8 81.8 85.8 80.9 82.0 86.1 78.9
Casp-3 147 76.9 78.9 80.6 74.0 65.9 81.3 87.2 52.5
Casp-8 164 79.3 78.7 88.6 75.6 72.1 76.5 92.6 62.9

AVG 80.1 79.8 83.7 78.5 73.0 79.9 88.6 64.8
±STD 3.6 1.7 4.3 6.4 7.5 3.0 3.5 13.3

PROF Casp-1 194 74.2 54.5 78.8 83.0 63.7 63.6 92.3 57.6
Casp-3 147 78.2 76.3 63.9 86.3 74.2 90.5 72.2 67.9
Casp-8 164 81.1 70.2 74.3 90.2 77.1 78.7 85.7 73.4

AVG 77.8 67.0 72.3 86.5 71.7 77.6 83.4 66.3
±STD 3.5 11.2 7.6 3.6 7.1 13.5 10.2 8.0
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Table 4. Prediction accuracies (Q3%, SOV%) of the secondary structures in the
chain ‘B’ of casp-1, casp-3, and casp-8 from four prediction methods (PHDsec,
PSIPRED, SAM-T02, PROF King).
Method Protein N, aa Q3% SOV%

All Helix Strand Coil All Helix Strand Coil
PHDsec Casp-1 88 67.0 100.030.0 59.3 52.2 100.0 17.1 43.2

Casp-3 97 68.0 90.3 14.3 69.2 62.3 90.3 17.9 58.2
Casp-8 95 70.5 96.3 35.7 66.7 59.9 100.0 26.2 50.5

AVG 68.595.5 26.7 65.1 58.1 96.8 20.4 50.6
±STD 1.8 4.9 11.1 5.1 5.3 5.6 5.0 7.5

PSIPRED Casp-1 88 69.0 91.7 33.3 64.8 77.2 100.0 23.0 76.1
Casp-3 97 78.4 90.3 64.3 75.0 74.1 90.3 54.8 69.7
Casp-8 95 69.5 96.3 28.6 66.7 75.5 100.0 14.7 79.0

AVG 72.392.8 42.1 68.8 75.6 96.8 30.8 74.9
±STD 5.3 3.1 19.4 5.4 1.6 5.6 21.2 4.8

SAM-T02Casp-1 88 69.3 100.070.0 55.6 66.8 100.0 37.2 59.1
Casp-3 97 70.1 83.9 42.9 69.2 69.7 90.3 41.4 65.6
Casp-8 95 72.6 100.035.7 68.5 73.6 100.0 34.3 70.5

AVG 70.794.6 49.5 64.4 70.0 96.8 37.6 65.1
±STD 1.7 9.3 18.1 7.7 3.4 5.6 3.6 5.7

PROF Casp-1 88 69.3 83.3 50.0 66.7 71.2 71.4 34.6 77.8
Casp-3 97 78.4 80.6 42.9 86.5 65.5 90.3 42.9 59.0
Casp-8 95 73.7 85.2 35.7 77.8 68.9 100.0 31.6 64.0

AVG 73.883.0 42.9 77.0 68.5 87.2 36.4 66.9
±STD 4.6 2.3 7.2 9.9 2.9 14.5 5.9 9.7
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Table 5. Estimated overall averages and standard deviations of accuracy
measures across all 4 methods for each chain of caspases.
Caspase N, aa Average Q3% (±STD) Average SOV% (±STD)

All Helix Strand Coil All Helix Strand Coil

Chain A 168.3
±23.8

80.8
±3.5

74.3
±8.3

78.2
±6.6

85.4
±5.4

73.9
±6.5

80.3
±6.8

86.5
±6.7

67.4
±9.4

Chain B 71.3
±3.8

71.3
±3.8

91.5
±7.1

40.3
±15.4

68.8
±8.1

68.1
±7.3

94.4
±8.6

31.3
±12.0

64.4
±11.0

Table 6. The number of helices and the number of strands, and their percent
residue content in chains ‘A’ and ‘B’ of caspases-1, 3, and 8.
Caspase Chain Helix Strand

Number Content (%) Number Content (%)
Casp-1 A 4 23.20 6 16.40
Casp-3 A 3 21.77 7 23.13
Casp-8 A 4 23.17 7 21.34

Casp-1 B 2 27.27 4 11.36
Casp-3 B 2 28.87 4 14.43
Casp-8 B 2 28.42 4 12.63
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Box 1. Amino acid sequences of the two chains (A & B) of caspases-1, 3, & 8.
Their observed secondary structures are shown in red.  The EMotif search of
the Blocks+ retrieved four conserved blocks in chain A and one in chain B
(IPB001309 A-E), which are shown in blue.  These five conserved blocks are
underlined in red in the observed secondary structure.  The pentapeptide
catalytic site in chain ‘A’ is shown in highlighted and underlined blue.

Casp-1 (Chain A)
SQGVLSSFPAPQAVQDNPAMPTSSGSEGNVKLCSLEEAQRIWKQKSAEIYPIMDKSSRTRLALIICNEEFD
SIPRRTGAEVDITGMTMLLQNLGYSVDVKKNLTASDMTTELEAFAHRPEHKTSDSTFLVFMSHGIREGICG
KKHSEQVPDILQLNAIFNMLNTKNCPSLKDKPKVIIIQACRGDSPGVVWFKD
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHCHHHCCCCCCCCCCCCEEEEEECCCCC
CCCCCCCHHHHHHHHHHHHHHHCCEEEEEECCCHHHHHHHHHHHHHCCHHHHCCEEEEEEECCECCCEEEC
CCCCCCCCCEEEHHHHHHHCCCCCCHHHCCCEEEEEEECCCCCCCCCCCCCC

Casp-1 (Chain B)
AIKKAHIEKDFIAFCSSTPDNVSWRHPTMGSVFIGRLIEHMQEYACSCDVEEIFRKVRFSFEQPAGRAQMP
TTERVTLTRCFYLFPGH
CCCCCCCCCCCCEEECCCCCCCCCEECCCEEHHHHHHHHHHHHHCCCCCHHHHHHHHHHHCCCCCCCCCCC
EEECCCCCCCCCCCCCC

Casp-3 (Chain A)
SGISLDNSYKMDYPEMGLCIIINNKNFHKSTGMTSRSGTDVDAANLRETFRNLKYEVRNKNDLTREEIVEL
MRDVSKEDHSKRSSFVCVLLSHGEEGIIFGTNGPVDLKKITNFFRGDRCRSLTGKPKLFIIQACRGTELDC
GIETD
CCCCCCCCCCCCCCECCEEEEEECCCCCHHHCCCCCCCHHHHHHHHHHHHHHCCCEEEEEECCCHHHHHHH
HHHHHHCCCCCECEEEEEEECCEECCEEECCCCEEEHHHHHCCCCCCCCHHHCCCEEEEEEECCCCCCCCC
CCCCC

Casp-3 (Chain B)
DMACHKIPVDADFLYAYSTAPGYYSWRNSKDGSWFIQSLCAMLKQYADKLEFMHILTRVNRKVATEFESFS
FDATFHAKKQIPCIVSMLTKELYFYH
CCCCCCCCCCCCEEEEECCCCCCCCCEECCCEEHHHHHHHHHHHHHCCCCCHHHHHHHHHHHHHHHCCCCC
CCHHHCCCCCCCEEEEECCCCCCCCC

Casp-8 (Chain A)
SPREQDSESQTLDKVYQMKSKPRGYCLIINNHNFAKAREKVPKLHSIRDRNGTHLDAGALTTTFEELHFEI
KPHDDCTVEQIYEILKIYQLMDHSNMDCFICCILSHGDKGIIYGTDGQEAPIYELTSQFTGLKCPSLAGKP
KVFFIQACQGDNYQKGIPVETD
CCCCCCCCCCCCCCCCCCCCCCCEEEEEEECCCCHHHHHHCHHHCCCCCCCCHHHHHHHHHHHHHHCCCEE
EEEECCCHHHHHHHHHHHHHCCCCCCSEEEEEEECCEECCEEECCCCCEEEHHHHHHHHCCCCCHHHCCCE
EEEEEECCCCCCCCCCCCCCCC

Casp-8 (Chain B)
LSSPQTRYIPDEADFLLGMATVNNCVSYRNPAEGTWYIQSLCQSLRERCPRGDDILTILTEVNYEVSNKDD
KKNMGKQMPQPTFTLRKKLVFPSD
CCCCCCCCCCCCCCCEEEECCCCCCCCCEECCCEEHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHCCE
CCCCECCCCEEEECCCCCCCCCCC


