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Utilization of primary and secondary structure elements to predict a protein’s propensity to form
amyloids.

Introduction

Protein aggregation and amyloid formation has long been tied to pathological disorders
(1). The cell expends a large amount of its energy towards properly folding its proteins,
regulating their destruction, and preventing non-productive associations leading to aggregate and
inclusion formation (2). Breakdowns in the protein folding pathway have been shown to
decrease the cell’s ability to clear cellular waste leading to a buildup of cellular trash. This trash
has been linked to numerous neurodegenerative diseases and much research effort has been
aimed at elucidating the misfolding pathway. Many of these conformational diseases have been
shown to be genetically encoded in which a particular mutated protein leads to improper folding
pathways. Huntingtin’s and Parkinson’s disease arise from mutations in single proteins giving
rise to an aggregated state that either escapes or overwhelms the cellular clearance mechanisms
(3-5). One of the most well characterized conformational diseases is Alzheimer’s disease. A
hallmark of the cytopathology is the accumulation of amyloid plagques in neuropils and
neurofibrillar tangles (6). All of these diseases point to a common feature. These aggregation
prone proteins are normally soluble with a variety of three-dimensional structures that are stable
until some mutation or cellular event triggers a conformational change leading to amyloid
formation (7-9). Amyloid fibrils have an extremely characteristic structure in which they are
built up from B-strands perpendicular and parallel to the main fiber axis (10-11). It appears that

different proteins can adopt this structure arguing that the amyloid conformation might be merely



an alternative folding conformation amenable to all proteins regardless of their amino acid
makeup (12,20). However, it also must be true that sequence elements dictate the propensity to
form aggregates as huntingtin proteins with a glutamine expansion of 25 remains soluble
whereas CAG trinucleotide expansion beyond 40 results in aggregation formation (13-15). Also,
the Kkinetics of aggregation in Huntingtin’s models has also been tied to the length of the
trinucleotide repeats.

Despite the ability of aggregation prone proteins to form common amyloid structures, the
structures of the soluble proteins as well as their individual cellular functions are extremely
divergent (16). How can proteins so distantly related all follow a similar misfolding pathway? It
is possible that all of the amyloid forming proteins share a common structural motif that can be
gleaning from analysis of their primary amino acid sequence. However, attempts to identify a
common sequence characteristic among these proteins have failed. Studies of the amyloid [3
(AP) peptide found in amyloid plaques of Alzheimer’s patients have shown that a
conformational switch from a a-helix to a 3-sheet precipitates the aggregation event (17,22).
This a/p trigger has also been shown to proceed the misfolding event in prion diseases
(18,19,21). This commonality might serve as the avenue for which computational techniques
can identify possible amyloid forming proteins from sequence analysis and secondary/tertiary
structure predictions.

Prediction of secondary structure based solely on the information within a protein
sequence is highly useful in a number of different respects. Methods for predicting secondary
structure have improved substantially in the last decade through the use of dynamic
programming methods and evolutionary information gleaned from proteins in the same structural

family (23-25). To date, the best prediction algorithms reach a predictive capability of 76%,



meaning that 76% of all residues were correctly predicted as helix, strand, or other (26). This
places prediction techniques at the level of resolution equal to the best efforts of Fourier-
transform infrared (FT-IR) and circular dichroism (CD) structural techniques (27). Recent
increases in the accuracy of prediction stems from three sources. First, and most significantly,
the sheer increase in the number to sequences and alignments in Genbank along with the
concurrent rise in the number of three-dimensional structures available have increased sensitivity
by allowing the dynamic programming methods to be trained on a more complete set of
structures (28,29). It is easy to image that increasing the known diversity of sequences that give
rise to common structural elements will greatly aid prediction capabilities. Second, the
prediction methods themselves have been refined combining multiple neural networks to achieve
increased accuracy (30-33). Lastly, the ability to construct multiple sequence alignments that
include more distant homologs using PSI-BLAST has contributed to recent advances in
prediction accuracy (34,35). However, it can also be said that accuracy has really only increased
7-10% since the first iteration of PHD in the early 90s. Given smaller proteins with 100 amino
acids, these advances are marginal at best. Although, small increases in prediction accuracy can
be extremely beneficial when analyzing larger more complex proteins especially if predictions
are made on a genome-wide scale. The holy grail of computational structural prediction is ab
initio 3-D structure prediction using only sequence information to construct the model.

However, combinatorial methods using known structural homologs in the protein data bank as

well as predicted secondary structure have led to the best overall tertiary structure predictions.

Results

These recent advances in prediction capabilities might aid in predicting structural motifs

underlying amyloid formation. A first-glance analysis at the sequences of the known



aggregation prone proteins reveals absolutely no similarity embedded within the primary
sequence, which suggests that the similarity must be structural in nature. Analysis of their
solved structures is futile due to the fact that the informative structure, being the amyloid state, is
completely insoluble making its structural analysis by conventional high-resolution methods
impossible (36). Two recent publications have attempted to shed light on this problem. First,
Jonathan Blake and Fred Cohen attempted to improve alignment techniques of distant homologs
with low sequence identity (37). They developed a new set of amino acid substitution matrices
taking advantage of structural data to indicate evolutionary consequences of amino acid
substitution. The goal of this method is to improve alignment methods for homologs of less than
30% identity. However, this technique is largely inapplicable to the question at hand as the
sequence similarity between amyloid forming proteins is less than 10%, which according to the
above study makes the sequence alignment indistinguishable from sheer chance. Attempts to do
a pair-wise alignment with the A3 peptide and the human Prion protein (PrP) are futile as no
similarity can be found by blastp methods. Again, this points to structural similarity underlying
aggregation prone proteins. The second study of particular interest by Kallberg and coworkers
from the Karolinska Institute addresses the prediction issue from a structural standpoint (38).
Findings that a conformational switch from a a-helix to a 3-sheet triggers the aggregation event
for AP peptide and the studied prion proteins led the investigators to pinpoint the individual
structural element responsible for the switch. The authors found that while the solved structure
of soluble AP peptide revealed that residues 15-25 comprise a helix, secondary structure
prediction algorithms predicted the same residues to form a [3-sheet (figure 1). The same was
found to be true for the prion proteins as well as a lung surfactant protein C that has been shown

to form aggregates with amyloid-like structure (46). The authors then mined the structural



database for proteins that have helical structures where (3-strands are predicted. The authors
found 37 proteins that fit these criteria and others detailed in the paper. The findings were
validated when three of the previously unstudied proteins identified in the database search were
shown to form amyloids under conditions similar to A3 aggregation.

The technique for predicting amyloid formation described in the above paper relies on
having a solved three-dimensional structure for its predictions. This is an obvious limitation as
the number of sequences present in Genbank far outnumbers the structures deposited in the
protein data bank. | attempted to build upon the previous findings and used the 37 proteins
predicted to form amyloids as a basis for determining a possible common sequence element |
chose to use the 20 proteins with the longest aberrant helix, being the helix that was predicted to
be a strand, and preformed a multiple sequence alignment using clustalW with low penalties for
gap creation and extension (figure 2). To my surprise, two segments of all 20 sequences aligned.
Upon closer investigation the first segment corresponded to the aberrant helix in 10 of the 20
proteins. A block was constructed from block maker corresponding to this aligned segment
(figure 3) in the hopes that a database search using this block would come back with the 17
proteins predicted to form amyloids not used in the alignment. However, due to the low
sequence identity random proteins were matched to the block. A consensus sequence was
created using emotif maker and this was used to perform a BLAST search of the swissprot
database (40). The motif created was fairly general which gave thousands of matches upon a
database search.

In order to refine my search, only the 10 proteins whose aligned segment corresponded to

the aberrant helix were used to create an alignment and subsequent block (figure 4). Because the



block and eMotif is based largely on the three prion proteins in the alignment, the resulting
database search gave primarily known homologs of the prion proteins.

Four secondary structure prediction programs were tested against each other in their
ability to correctly predict a a-helix instead of the normally predicted [3-sheet for three of the
known amyloid forming proteins. PHD, Sspro8.0, Prof, and PsiPred all predicted (3-sheets in the
region of interest despite having a known structure available This is consistent with recent
evaluations of the secondary structure prediction sites as current automated analyses of the
techniques revealed most of the prediction algorithms to be equally good varying by only a few
percentage points (39).

Discussion

Increases in the sensitivity of secondary structure prediction algorithms along with an
increase in the numbers of sequences and structures available suggests a possibility to reveal
more distant structural similarities between proteins of dissimilar function. This becomes of
particular interest for proteins that have a propensity to form alternative structures off of the
normal folding pathway. Amyloid forming proteins have been shown to be a main
cytopathological effect in many neurodegenerative diseases. These proteins have no known
sequence or functional similarity despite their common ability to form higher order aggregates.
Recent reports suggest that a combinatorial approach of using low gap penalties and structure-
based substitution matrices to construct multiple sequence alignments will result in identification
of more distant homologs. However, due to the extreme sequence divergence between the
proteins of interest, even these more sensitive techniques are not helpful for predicting amyloid
forming proteins. The best approach results from a knowledge-based approach where the known

biology of aggregation is used to probe the structural database looking for helices that are



predicted to be sheets. This subset of proteins reveals an underlying sequence similarity that
could be useful for using a sequence-based technique for mining the database. However, even
within this aligned segment of aberrant helices, no significant or useful sequence homology can
be found. This reveals a dependence upon sequence identity for most of the current
computational toolboxes. Emotif for example, is really only useful for alignments of sequences
that are greater than 30% identical. This 30% cutoff seems to be the gold standard for most
techniques giving them a bias towards merely looking for sequence homology between
organisms and less useful for deciphering less obvious functional and structural similarities.

A large defect in the secondary structure prediction field is the limitation of the three
state prediction placing every residue into the pedestrian categories of helix, strand, or other. A
more careful categorization among prediction software and among the annotation of structures
would be helpful for the classification of biological significance of structural motifs. However,
with the greater complexity of classification comes an exponential increase of the computational

complexity.
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Figure 1: Alignment and secondary structure prediction of AR family and the prion family.
A. Alignment and secondary structure prediction created from predictprotein (PHD) for the
amyloid beta family of proteins. Predictions using other programs (Prof, PSIPRED, Sspro8.0)
yielded similar predictions B. The primary sequence and annotated secondary structure from the
protein data bank of the AP peptide. The bolded segment denotes the aberrant helix that is
predicted to be a 3-sheet. C. Alignment and secondary structure prediction for the prion protein
family. D. The primary sequence and the annotated secondary structure for the human PrP.

1BCT _  mmmmmmmmmm MRPEVASTFKVLRNVTVVLWSAYPVVWL I GSEGAG IVPLNIETL
1SPF e LRIPCCPVNLKRLLVVVV
7.3 1 =10 1 SGGGGVDVGDVVSAIQGAAGP 1AA
1BA6__  mmmmm e DAEFRHDSGYEVHHQKLVFFA
3PTE__ IEKLTGHSVATEYQ--NRIFTPLNLTDTFYVHPDTV IPGTHANGYLTPDEAGGALVDSTE
1QLX_A SRP1 IHFGSDYEDR--YYRENMHRYPNQVYYRPMDEYSNQNNFVHDCVN I TIKQHTVTTT
1AG2__ SRPMIHFGNDWEDR--YYRENMYRYPNQVYYRPVDQYSNQNNFVHDCVN I TIKQHTVTTT
1B10_A SRPMMHFGNDWEDR--YYRENMNRYPNQVYYRPVDQYNNQNNFVHDCVN I TIKQHTVTTT
1PBV AFVDLHEFTDL----- NLVQALRQFLWSFRLPGEAQK I DRMMEAFAQRYCLCNPGVFQST
IMTY_D DGF 1 SGDAVECSLN--LQLVGEACFTNPL IVAVTEWAAANGDE I TPTVFLS I ETDELRHM
1VNS__ THPVVL IPVDPNNP--NGPKMPFRQYHAPFYGKTTKRFATQSEHFLADPPGLRSNADETA
1AUR_A ASRIFLAGFSQGGA--VVFHTAF INWQGPLGGV IALSTYAPTFGDELELSASQQR IPALC
1TCA__ GLTQIVPTTNLYSA--TDEIVQPQVSNSPLDSSYLFNGKNVQAQAVCGPLFV IDHAGSLT
20CC_K =~ mmmmmmmmmmmemmmm e IHQKRAPDFHDKYGNAVLASGATFCV
25QC_A LHGYQKLSVHPFRR--AAE IRALDWLLERQAGDGSWGG I QPPWFYAL I ALK I LDMTQHPA
1WER KSVQHKWPTNTT----MRTRVVSGFVFLRL ICPAILNPRMFNI 1SDSPSPIAARTLILVA
1B8O_A QKAHSTWKQMGEQR--ELQEGTYVMLGGPNFETVAECRLLRNLGADAVGMSTVPEV IVAR
1B2V_A AHTLYGQLDSLSFG--DGLSGGDTSPYS I1QVPDVSFGGLNLSSLQAQGHDGVVHQVVYGL
1QUT_A DEQDDPLNLKGSFA--GAMGYGQFMPSSYKQYAVDFSGDGH INLWDPVDA I GSVANYFKA
1GGT B VMDRAQMDLSGRGNP IKVSRVGSAMVNAKDDEGVLVGSWDN 1 YAYGVPPSAWTGSVDILL

Figure 2: Multiple sequence alignment of 20 predicted amyloid forming proteins.

A multiple sequence alignment was generated using ClustalW with a Blosum62 matrix and a gap
opening penalty of 10 and an extension penalty of 0.05. This represents only a subset of the total
alignment with the above section representing one of only two segments where all 20 proteins
aligned. This segment corresponds to the aberrant helix in 10 of the proteins.



ID x13941xbl; BLOCK
AC  x13941xblA; distance from previous blocks=(431,431)
DE ../tmp/13941 _blin
BL UNK motif; width=13; seqs=20; 99.5%=0; strength=0

1AG2__ ( 431) NITIKQHTVTTTT 38
1B10_A ( 431) NITIKQHTVTTTT 38
1QLX_A ( 431) NITIKQHTVTTTT 38
1SPF__ ( 431) PVNLKRLLVWWWV 65
21F0__ ( 431) 1AAIGGAVLTVMV 60
1VNS__ ( 431) NSEVNNADFARLF 57
1BA6__ ( 431) GYEVHHQKLVFFA 81
1B80_A ( 431) GMSTVPEVIVARH 96
1GGT_B ( 431) FAEVNSDLIYITA 56
20CC_K ( 431) TFCVAVWVYMATQ 94
1BCT__ ( 431) PLNIETLLFMVLD 57
1PBV__ ( 431) TCYVLSFAVIMLN 84
2SQC_A ( 431) ISPVWDTGLAVLA 63
1WER__ ( 431) AKSVONLANLVEF 82
3PTE__ ( 431) LTPDEAGGALVDS 100
IMTY_D ( 431) FTPVLGMLFEYGS 69
1AUR_A ( 431) CLHGQYDDVVQNA 90
1B2V_A ( 431) HDGVVHQVVYGLM 66
1QUT_A ( 431) HGWVKGDQVAVMA 52
1TCA__ ( 431) HAGSLTSQFSYW 78

Figure 3: Block created from the above multiple sequence alignment.

The multiple sequence alignment from above was input into Blockmaker and the
resulting block is represented. Two blocks were constructed from this
alignment with the above block representing the segment of interest. Note
the low degree of sequence similarity. Attempts to construct a consensus
sequence and search the database for possible amyloid forming proteins failed
due to the low sequence identity.



1BCT__ VLWSAYPVVWL 1GSEGAGIVPLNIETLLFMVLDVSAKVGFGLILLRSRAIFG-====—--
1SPF__ LRIPCCPVNLKRLLVVVVVVWVLVVWIVGALLMGL-==== === === — e ——
21FO__ 1QGAAGP IAAIGGAVLTVMVGIKVYKWVRRAM - === == === — e e
1BAG6_ YEVHHQKLVFFAEDVGSNKGAI IGLX-VGGVW-———-—— === — - ———
1QLX_A ITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGS—--—-———-——-
1AG2___ ITIKQHTVTTTTKGENFTETDVKMMERVVEQMCVTQYQKESQAYY--—————————————
1B10_A ITIKQHTVTTTTKGENFTETDIKIMERVVEQMCTTQYQKESQAYYDGRRS--—-————--
IMTY_D VS IANDPASAKYLNTDLNNAFWTQQKYFTPVLGMLFEYGSKFKVEPWVKTWDRWVYEDWG
20CC_K NAVLASGATFCVAVWYMATQIGIEWNPSPVGRVTPKEWREQ-—--—=—==—=—=——————
1B2V_A GDTGALETALNGILDDYGLSVNSTFDQVAAATAVGVQHADSPELLAA-———=———————-
B

ID x4806xbli; BLOCK
AC  x4806xbliA; distance from previous blocks=(147,147)
DE ../tmp/4806.blin
BL UNK motif; width=17; seqs=10; 99.5%=0; strength=0

1AG2__ ( 147) GGYMLGSAMSRPMIHFG 34
1B10_A ( 147) GGYMLGSAMSRPMMHFG 37
1QLX_A ( 147) GGYMLGSAMSRPIIHFG 36
21IFO__ ( 147) GGVDVGDVVSAIQGAAG 73
1BAG___ ( 147) FRHDSGYEVHHQKLVFF 88
IMTY_D ( 147) GQDPAGHNDARRTRTIG 78
1SPF__ ( 147) LRIPCCPVNLKRLLVVV 100
1BCT__ ( 147) NVTVVLWSAYPVVWLIG 95
1B2V_A ( 147) GGDTSPYSIQVPDVSFG 71
20CC_K ( 147) NAVLASGATFCVAVWVY 96

Figure 4: Multiple sequence alignment and block from a subset predicted amyloid proteins.
A. A multiple sequence alignment was constructed with ClustalW on the 10 predicted amyloid
forming proteins whose aligned segment corresponded to the aberrant helix. B. The block that
was created from the above multiple sequence alignment. Subsequent searches of the database
with the created block did not retrieve any of the other 10 proteins omitted from this alignment.
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