
 1 of 12 Report.fm

December 6, 2002

Brian Hang Wai Yang

ID: 4469409

A Parallel Implementation of Smith-Waterman
Sequence Comparison Algorithm

 2 of 12 Report.fm

December 6, 2002

1.0 Abstract

Exploiting the Gotoh’s enhancement, a novel VLSI implementation of Smith-Waterman algorithm is
presented. We also present a unique way to place gates using bit-stacking technique. This enable the
development of scalable specialized hardware solution that can readily migrate to more advanced VLSI
process.

2.0 Introduction

Sequence database searching is among the most important and challenging tasks in bioinformatics. The
ultimate choice of sequence search algorithm is that of Smith-Waternan. However, because of the com-
putationally demanding nature of this method, heuristic programs have been developed. Increased
speed has been obtained at the cost of reduced sensitivity.

The rapidly increasing amounts to genetic-sequence information available represent a constant chal-
lenge to developers of hardware and software database searching and handling. The size of GenBank/
EMBL/DDBJ necleotide database has been doubling every 15 months (Benson et al 2000). The rapid
expansion of the genetic sequence information is probably exceeding the growth in computer power, in
spite of the fact that computing resource also have been increasing exponentially for many years. If this
trend continues, increasingly longer time or increasing more expensive computers will be needed to
search the entire database.

When looking for sequences in a database similar to a given query sequence, the search programs com-
pute an alignment score for every sequence in the database. This score represents the degree of similar-
ity between the query and database sequence. The score is calculated from the alignment of the two
sequences, and is based on a substitution score matrix and a gap-penalty function. A dynamic program-
ming algorithm for computing the optimal local-alignment score was first described by Smith and
Waterman (1981) and later enhanced by Gotoh (1982) for linear gap-penalty functions.

Database searches using the optimal algorithm are unfortunately quite slow on ordinary computers, so
many heuristic alternatives have been developed, such as FASTA and BLAST. These methods have
reduced the running time by a factor of upto 40 compared with the best-known Smith-Waterman imple-
mentation, however, at the expense of sensitivity. As a result, a distantly related sequence may not be
found in a search using these heuristic algorithms.

For high-speed implementation of the Smith-Waterman algorithm, some have exploited the single-
instruction, multiple-data (SIMD) computers. A SIMD computer is able to perform the same operation
on several independent data sources in parallel. With the introduction on Pentium MMX microproces-
sor in 1997, Intel made computing with SIMD technology available in a general-purpose microproces-
sor in the most widely used computer architecture - the industry-standard PC.

Several special-purpose hardware solutions have been also developed for Smith-Waterman algorithm,
such as Paracel’s GeneMatcher, Compugen’s Bioaccelerator and TimeLogic’s Decypher. These
machines are able to process more than 2000 million matrix cells per second, and can be expanded to
reach much higher speeds.

 3 of 12 Report.fm

December 6, 2002

We present a novel VLSI implementation that exploits the locality of the algorithm. Further, an optimal
placement-and-route paradigm that can generate placed circuit for any given size. This allows the cir-
cuit to be readily migrated to different fabrication process and device frequency.

3.0 Smith-Waterman Algorithm

To compute the optimal local-alignment score, the dynamic programming algorithm by Smith and
Waterman (1981), as enhanced by Gotoh (1982), was used. Two sequences are A = a1 a2 ... aM and B =
b1 b2 ... bN. A weight d(am, bn) is given to an aligned pair of residues am and bn . Usually d(am, bn) <= 0
if am = bn , and d(am, bn) > 0 if am != bn. These definitions come from Gotoh (1982), and they are equiv-
alent to original definitions from Smith and Waterman(1981). Here is Gotoh’s contribution: If the gap
of length k has penalty wk = uk + v (u>=0, v>=0)1 , Gotoh proves that the W-S algorithm can run in
MN steps. The distance matrix Dm,n has the following induction form

4.0 Implementation

With Gotoh’s improvement, the value of Dm,n only depends on value of 3 other cells, namely Dm-1,n-1,
Dm,n-1 and Dm-1,n. In this section, we exploit this locality property to achieve a high speed implementa-
tion in VLSI technology.

1. Gap opening penalty = w1 = u+v. Gap extension penalty is wk - wk-1= v.

Dm n, Min Dm 1 n 1–,– d am bn+()+ Pm n, Qm n,,[,]=

Pm n, Min Dm 1 n,– w1+ Pm 1 n,– u+[,]=

Qm n, Min Dm n 1–, w1+ Qm n 1–, u+[,]=

 4 of 12 Report.fm

December 6, 2002

A small processing element called Proclet is designed as shown in Figure1 on page4. Note that each
Proclet contains only simple combinatoric circuits such as adders and comparators (for finding mini-
mum of two values). Proclet (m,n) is responsible for calculating the value of Dm,n . Proclet(m,n) has a
number of input and output signals. All of these signals connects only to its nearest neighbors in an
array.

TABLE 1. Input and Output Signals of Proclet (m,n)

Input/Output From/to Which Neighbor?

Dm,n-1 Input From left neighbor - Proclet (m, n-1)

Qm,n-1 Input

Dm-1,n Input From upper neighbor - Proclet (m-1, n)

Pm-1,n Input

Dm-1,n-1 Input From upper-left neighbor - Proclet (m-1, n-1)

Dm,n1 Output To right neighbor - Proclet (m, n+1)

Qm,n1 Output

Dn 1 m 1–,–

Qm n 1–,

D n 1 m,–Pn 1 m,–

+

u

Qm n,
M

I
N

+ w1

+u

MIN

Qm n,

Pm n,

d am bn,()

M
IN

Dn 1 m 1–,–

M
IN

Pm n,

M
IN

Dn m,

Dm n 1–,
+

w1

Dn m,

Dn m,

FIGURE 1. Proclet (m,n)

 5 of 12 Report.fm

December 6, 2002

A 2-dimension array of Proclets are placed on the silicon die. A 4x4 example is shown in Figure2 on
page5. The dimension of the array has to be at least M and N, where M, N are the dimensions of the
sequences to be aligned. In later section, we will discuss how to circumvent this limitation. For now,
let us assume that the dimension of the Proclet array exceeds that of the 2 sequences to be aligned.

To visualize operation of the Proclet array, one can think in terms of a wavefront. To begin, the wave-
front constitutes Proclet(1, 1). Proclet(1, 1) calculates the value of D1,1 .Then the value of D1,1 , P1,1 ,
Q1,1 are passed from Proclet (1,1) to Proclet(2,1) and Proclet (1,2), using the wires that connects neigh-
boring Proclets. This enables Proclet (2,1) and Proclet(1,2) to calculate the value of D2,1 and D1,2
respectively. The wavefront has just propagated, and now constitutes of Proclet(2,1) and Proclet(1,2).

Next step, Proclet(2,1) and Proclet(1,2) provides D2,1, P2,1 , Q2,1 , D1,2, P1,2 , Q1,2 for Proclet(3,1), Pro-
clet (2,2) and Proclet (1,3) via the wires connecting neighboring Proclets. This allows Proclet(3,1),
Proclet (2,2) and Proclet (1,3) to calculate D3,1 , D2,2 and D1,3.. The wavefront has just propagated
again, and constitutes now of Proclet(3,1), Proclet(2,2) and Proclet(1,3).

In this manner, the wavefront propagates through the array. When it is done propagation through all
Proclets, it has finished updating Dm,n for every cell in the array.

Dm1,n Output To lower neighbor - Proclet (m+1, n)

Pm1,n Output

Dm1,n1 Output To lower-right neighbor - Proclet (m+1, n+1)

TABLE 1. Input and Output Signals of Proclet (m,n)

Input/Output From/to Which Neighbor?

FIGURE 2. A 4x4 array of Proclets

Proclet
 (0,1)

Proclet
 (1,2)

Proclet
 (2,3)

Proclet
 (3,4)

Proclet
 (0,1)

Proclet
 (1,2)

Proclet
 (2,3)

Proclet
 (3,4)

Proclet
 (0,1)

Proclet
 (1,2)

Proclet
 (2,3)

Proclet
 (3,4)

Proclet
 (0,1)

Proclet
 (1,2)

Proclet
 (2,3)

Proclet
 (3,4)

 6 of 12 Report.fm

December 6, 2002

5.0 Performance

We claim that this implementation provides a very fast way to update Dm,n with current ASIC technol-
ogy. The speed limit of general logic circuits is determined by propagation delay of the logic elements
(i.e. adders and comparators) and also propagation delay of the wires connecting these logic elements.
We use Figure4, “Propagation delays,” on page 7 as an illustration.

FIGURE 3. Wavefront Propagation in a 4x4 Proclet Array

Step1 Step2 Step3 Step4

Step5 Step6 Step7

 7 of 12 Report.fm

December 6, 2002

We place the Proclets on the silicon, paying attention to locality of the terminals of the wires. Naturally
we want to place neighboring Proclets close together on the silicon to minimize the length of the wires.
In fact the placement scheme of Figure2, “A 4x4 array of Proclets,” on page 5 is optimal. This way the
wire between neighboring Proclet is made very short. The wires are made short so that its propagation
delay is negligible compared with the propagation delay of the combinatoric logic.

The following table estimates the number of sequence alignment per second. .

TABLE 2. Proclet circuit propagation delay estimate

Target value

(a) Datapath widtha

a. Datapath width refers to the bit-width for values of Dm,n,, Pm,n and Qm,n

8bits b

b. Rognes (2000) also uses a 8bit value.

(b) Critical Timing Pathc

c. In Figure5, “Critical Path of Proclet (m,n),” on page8, one of the critical timing path is high-
lighted in dark. Clearly, there are a few symmetric path, all of which are equally critical. Only
one is highlighted.

ADD - MIN- MIN- MIN

(c) Critical Timing Path Delay 500psd * 4 = 2ns

d. assume IBM CU-11 0.13um process

(d) Array Size 512 by 512

(e) Each match takes (c) * (d) = 512 *2ns = 1024ns

(f) Performance 1/(e) = 976 K sequence alignments per second

+

Min

+

Min

twire1 twire2
twire3

tlogic1 tlogic2

FIGURE 4. Propagation delays

Logic

Logic

 8 of 12 Report.fm

December 6, 2002

6.0 Future Work

We describes two concepts with potential to enhance performance.

6.1 Scale to larger M and N

In the baseline implementation described above, the length of the sequences to be aligned are restricted
to the size of the Proclet array. Such restriction can be circumvented with a slight modification.

For example, we build a 4x4 Proclet array. To align two 16-element long sequences, we first apply the
4x4 Proclet array to the sub-sequences {a1 a2 a3 a4 } and {b1 b2 b3 b4}. Then we apply the Proclet array
to the sub-sequences {a1 a2 a3 a4 } and {b5 b6 b7 b8}. After that, we apply the Proclet array to the pair of
sub-sequences {a5 a6 a7 a8 } and {b1 b2 b3 b4}. This concept is illustrated in Figure6 on page9.

FIGURE 5. Critical Path of Proclet (m,n)

Dn 1 m 1–,–

Qm n 1–,

Dn 1 m,–Pn 1 m,–

+

u

Qm n,

M
IN

+ w1

+u

MIN

Qm n,

Pm n,

d am bn,()

M
IN

Dn 1 m 1–,–

M
IN

Pm n,
M

IN

Dn m,

Dm n 1–,
+

w1

Dn m,

Dn m,

 9 of 12 Report.fm

December 6, 2002

6.2 Pipeline Implementation

Note that in Figure3 on page6, only a small fraction of the Proclet in the array are used at any one time.
With pipelining, we can fully utilize all Proclets to execute multiple comparisons simultaneously. This
is especially useful when querying one sequence against a large set of sequences from a database.

Let’s assume there is a large number of sequence pairs to be compared. We call the sequence pairs (A1 ,
B1), (A2 , B2), (A3, B 3) , (A4 , B4) ... In step 1, Proclet (1,1) works on (A1 , B1). Then in step 2, Proclet
(1,2) and Proclet (2,1) work on (A1, B1), exactly as described in Section 4.0. However, instead of
allowing Proclet (1,1) to go idle, Proclet (1,1) work on a new sequence pair (A2 , B2).

This concept is illustrated in Figure7 on page10.

FIGURE 6. Using a 4x4 Proclet Array to compare two 16-long sequences

 10 of 12 Report.fm

December 6, 2002

7.0 Conclusion

We have presented a novel implementation of the Smith-Waterman algorithm. The approach is well-
suited for customized VLSI with current fabrication technology. Performance of the new approach is
estimated using actual data from the IBM ASIC process.

8.0 Reference

1. Benson, D.A., Karsch-Mizrachi, I,. Lipman, D.J., Ostell, J., Rapp, B.A. and
Wheeler, D.L. (2000) Genbank. Nucleic Acids Res., 28, 15-18

2. Galper, A.R. and Brutlag, D.L. (1990) Parallel Similarity Search and Alignment
with the Dynamic Programming Method, provided by Professor Brutlag

3. Gotoh, O. (1982) An improved algorithm for matching biological sequences J. Mol.
Biol., 162, 705-708

4. Rognes, T. and SeeBerg E. (2000) Six-fold speedup of Smith-Waterman sequence
database searches using parallel processing on common microprocessors, Bioinfor-
matics, Vol.16, no. 8, 699-706

FIGURE 7. Pipeline Technique

Step1 Step2 Step3 Step4

Step5 Step6

(A
1,

B 1)

(A 1
, B

1
)

(A
2,
B 2)

(A
1,

B 1)

(A
2,
B 2)

(A
3,

B 3)

(A 1
, B

1
)

(A 2
, B

2
)

(A
3,

B 3)

(A 4
, B

4
)

(A 1
, B

1
)

(A 2
, B

2
)

(A
3,

B 3)

(A 4
, B

4
)

(A
5,
B 5)

(A 1
, B

1
)

(A
2,

B 2)
(A

3,
B 3)

(A 4
, B

4
)

(A
5,

B 5)

(A
6,
B 6)

Step7

(A
1,

B 1)

(A
2,
B 2)

(A
3,
B 3)

(A
4,

B 4)

(A 5
, B

5
)

(A 6
, B

6
)

(A
7,
B 7)

 11 of 12 Report.fm

December 6, 2002

5. Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subse-
quences, J. Mol. Biol., 147, 195-197

6. Advanced Cu-11 ASIC Databook (2000), IBM Microelectronics

 12 of 12 Report.fm

December 6, 2002

