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Abstract 
Amino acid substitution matrices are widely used in the field of computational 
molecular biology as a means of optimising protein sequence alignments.  Examples 
of substitution matrices include the PAM matrix [DAYHOFF79] and the BLOSUM 
matrix [HENIKOFF92]. 
 
Certain substitution matrices are better suited to certain alignments and one of the 
most common optimisations is to use a substitution matrix that is tailored to the 
presumed evolutionary distance between the sequences.  The PAM and BLOSUM 
matrix families both provide different matrices suited to aligning sequences at 
different evolutionary distances, however it is difficult to determine the optimal 
evolutionary distance without first making an alignment, which itself requires the use 
of a substitution matrix.  A common solution is to use a substitution matrix that 
performs reasonably well at most evolutionary distances e.g. BLOSUM62.  Certain 
other substitution matrices are optimised to structure, as opposed to identity, for 
example [KOSHI95]  
 
The aim of this work is to create organism-specific substitution matrices, the 
advantage being that an optimal matrix for source and target sequences - or 
potentially an asymmetric matrix tailored to both - could be selected using 
information available prior to the alignment being made. 
 
Several organism-level statistics are evaluated as part of the work, including the effect 
of positional base composition [KNIGHT01] and codon usage frequencies 
[NAKAMURA00].  Dinucleotide genome signatures such as those described by 
[GENTLES01] are also briefly considered. 
 
In the first phase of the project, substitution matrices are produced using a neural 
network approach based on work carried out by [LIN01], however these matrices fail 
to deliver any useful performance improvements.  Possible causes and solutions are 
discussed in the report. 
 
The second phase of the project considers organism specific biases within the context 
of substitution groups [WU96], in order to confirm that some organism level 
optimisation might be possible.  This work demonstrates that within certain conserved 
substitution groups, different organisms favour different amino acids. 
 
Finally, in order to examine potential underlying mechanisms for this behaviour, low 
order codon substitution groups are produced and evaluated. 



Neural network approach 
Lin et al [LIN01] report an elegant approach to the production of substitution matrices 
using an artificial neural network.  The network was trained using a large set of 
aligned residue pairs produced from structural alignments with varying sequence 
identities.  In addition to the aligned pairs, the neural network was also presented with 
the sequence identity of the alignment.  Substitution matrices for a range of sequence 
identities could be read line by line from the trained neural network by presenting the 
each of the 20 amino acids in turn to the input layer, along with the desired sequence 
identity. 
 
This work uses a similar approach, but instead of conditioning each alignment with 
the sequence identity, organism-level sequence statistics are used e.g. base 
composition. 

Data 
In common with Lin's work, alignments were produced using the CATH protein 
structure classification database [ORENGO97] as a source index.  Different CATH 
classification levels were used to provide a set of structural alignments between 
homologues across the full range of sequence identity.  Sequence identity was used to 
produce different sets of test alignments, so that the performance of the resultant 
neural networks could be evaluated at different levels of sequence identity. 
 
The CATH-derived index was then used to generate pair-wise structural alignments 
using both SSAP and LOCK, although only SSAP derived data are presented here. 
 
Codon Usage data was obtained from Nakamura's Codon Usage Database 
[NAKAMURA00].  The Codon Usage data was normalised (in a relational sense) and 
loaded into a relational database.  Several lookup tables were created to allow per-
organism codon and base composition statistics to be extracted from the dataset 
quickly and easily using standard SQL: 
 

•  Codon usage frequency per gene 
•  Codon usage frequency per organism 
•  Overall GC content per gene/organism 
•  Positional GC content per gene/organism 
•  NC. Effective number of codons used in a gene 

 
The pdb_source index was obtained from the Protein Data Bank [BERMAN00] and 
loaded into the database to allow organism-level codon usage frequency data to be 
joined to the relevant PDB structures and hence to the alignments.  The join was not 
100% efficient (i.e. certain PDB organisms were not matched in the Codon Usage 
database and vice versa) which reduced the effective number of protein alignments 
that could be used in the study. 
 
Codon Usage totals with less than 20 coding sequences per organism were excluded 
on the basis that this minimum sample size would be required to produce realistic 
genomic averages.  Knight [KNIGHT01] used the same Codon Usage database and 
reported that increasing the cut off to 50 or 100 coding sequences had no effect on the 
averages, save reducing the available dataset. 



Network topology 
The experiment used a modified version of the feed forward neural net employed by 
[LIN01].  The software was ported to Java (from C) to allow the tests to be run across 
various OS platforms.  The new version of the software was modified to allow 
network topology and learning rates to be varied using a text configuration file, to 
allow rapid prototyping. 
 
A range of different input data and network topologies were tested.  In each case the 
first 20 inputs of the input layer represents a binary 1-of-c input for each of the 20 
amino acids.  For example, Alanine (Ala, A) would set the value of the first input unit 
to 1 and the remaining nineteen to 0.  The output layer also features 20 units and 
follows an identical naming convention.  The output layer uses a normalised 
exponential, or softmax activation function, which ensures that all output values lie in 
the range 0 to 1 and sum to unity.  This allows the outputs to be treated as 
probabilities of class membership.  Following propagation of the net, the value 
presented at the first output node represents the posterior probability of the input 
residue aligning with the target residue. 
 
For each training iteration, one residue of an aligned pair was presented to the input 
layer, the other as the target for the output layer.  Additional conditioning information 
(e.g. GC content for source and target organism) is also presented to the input layer. 
 
The following table shows how the inputs and outputs might be configured for one 
training cycle with an Alanine/Proline alignment at an identity of 89%: 

A R N D C Q E G H I L K M F P S T W Y V id
s 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.89
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

A R N D C Q E G H I L K M F P S T W Y V

 
The following section describes several variations of this standard 20*20 setup.  In 
each case, different numbers of hidden units were tested empirically before an optimal 
rate of convergence was found.  All inputs were normalised against the relevant 
maximum / minimum values, so as to improve the performance of the neural network. 



Results 
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The graph shows the cross entropy errors for a range of neural network topologies and 
training sets.  The motivation for each topology and the results obtained are discussed 
below. 

SMN21 
This is the original 20 + identity topology as reported by [LIN01], however it was 
repeated to validate the neural network set-up and the training/testing data set.  The 
results obtained were comparable to those originally reported with the resulting 
probability matrix outperforming conventional matrices (BLOSUM62 shown in 
graph) across all identities. 

GC composition 
[KNIGHT01] presents a case for the causality of the correlation between genome GC 
content and frequencies of certain codons and amino acids, suggesting that nucleotide 
composition drives codon usage and not vice versa. 
 
On this basis, the following GC-based input layer configurations were produced and 
evaluated.  If successful, the use of GC data would have the advantage of being 
relatively compact as opposed to individual codon statistics, which would require a 
large number of input nodes.   
 
GC22-GC3 
This configuration featured two additional inputs; the total GC content of the 3rd 
codon position for both the source and target organism.  [KNIGHT01] notes that the 
GC content at the third codon position correlates strongly with the overall GC content 
and points out that, for example, lysine (K) and arginine (R) are highly correlated with 
GC content and that that they can easily substitute for one another in proteins.  We 



would therefore expect that two organisms with the same GC bias would have a lower 
probability for K-R substitution than two organisms with opposing GC biases. 
 
The results for GC22-GC3 show performance better than BLOSUM62 at identities of 
around 50% and above, but worse performance below this similarity level.  GC22-
GC3 performs worse than SMN21 at all levels of identity. 
 
GC26-GC123 
A variation on GC22-GC3, this configuration split the input data so that the GC total 
at each codon position was presented for both source and target residue.  This was 
done to determine whether the additional positional information would improve the 
performance of the neural network. 
 
The configuration performed marginally better than GC22-G3 at 0-20% identity and 
80-100% identity, but slightly worse at 70-80% identity.  At all other identities 
performance was identical with that observed with GC22-GC3; better than BLOSUM 
above 50%, worse that SMN21 at all identities. 

BLOSUM62 
This result is included on the graph as reported in [LIN01] and serves as a useful 
benchmark for the other configurations. 

SMN20 
In order to isolate the effect of the conditioning inputs for the most effective non-
identity network topology (GC26-GC123), a version of SMN21 was created, but 
without the identity input.  The resulting SMN20 performed on a par with GC26-
GC123 at all identities, which indicates that the bulk of any improvement over 
BLOSUM62 is largely a result of the neural network's ability to generalise alignments 
rather than the specific effect of the GC conditioning inputs. 
 
The following graph shows how SMN20 performs in relation to BLOSUM62, 
SMN21 and GC26-GC123. 
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Others 
The following configurations were also tested, however the results were worse than 
those described earlier and are therefore not reported in detail. 
 
Base Composition 
As GC alone may not always the best way to compare base composition between 
genomes and genes, an alternative configuration was devised which showed each base 
separately.  This configuration presented 8 additional inputs, once for each base 
content for both source and target organisms i.e. ASOURCE, CSOURCE, GSOURCE, TSOURCE, 
ATARGET, CTARGET, GTARGET, TTARGET.  Again, the values were normalised against the 
overall values from the CU database. 
 
CUF128 
This included the complete codon usage frequencies for both organisms as the 
conditioning inputs, however the network was incapable of converging with this many 
input nodes. 
 
Dinucleotide composition 
The relative dinucleotide abundances for each organism were derived from 
[GENTLES01] and used to condition the training inputs, however the results obtained 
were worse than without the conditioning data, suggesting that the additional data 
may have only served to add noise to the training inputs  

Discussion 
None of the matrices produced using organism-level statistics perform as well across 
sequence identities as those that included the sequence identity as a conditioning 
input, however they do perform better than traditional substitution matrices at certain 
identities. 



 
This result was initially taken as a positive indication that organism-level statistics 
could help to produce more effective substitution matrices, however the SMN20 (with 
no conditioning input) was found to perform equally well. 
 
The conclusion was that the neural network approach to producing substitution 
matrices is extremely effective even without the sequence identity and the 
incorporation of organism-specific base composition and codon statistics did not 
measurably improve the performance of the neural network.  In fact, the data suggests 
that the additional data may have only served to add noise to the training inputs and, 
as such, reduced rather than improved the effectiveness of the net. 
 
There are several possible explanations for the failure of this organism level data to 
have a clear positive effect on the performance of the neural network. 
 
Firstly, the addition of the organism specific training data significantly increases the 
number of training alignments required in order for the neural network to properly 
generalise the relationships between amino acid substitution probabilities and the 
organism specific statistic.  The method used to produce the alignment index from 
CATH used the hierarchical nature of the CATH families to ensure that each range of 
sequence identity was adequately represented, however there was insufficient data to 
ensure that each range of organism specific statistic (e.g. GC bias at codon position 3) 
was also adequately represented within these groups. 
 
Secondly, while bacterial genomes differ in mean G+C and have small variation about 
that mean, Mammalian genomes all have approx the same mean G+C but with large 
variation within the genome [SUEOKA62].  It is therefore possible that systematic 
effects would be visible if only bacterial alignments are used.  An attempt was made 
to generate a bacteria only dataset from the structural alignments, however the 
resultant dataset was deemed of insufficient size to proceed with, so it was not 
possible to test this hypothesis. 
 
A final possibility is that there is in fact no organism-level statistic that can be used to 
predict inter-organism variations in substitution probabilities for amino acids. 

Organism specific substitution groups 
The neural network analyses based on organism-level base composition statistics did 
not produce a significant result, so attention was then given to organism specific 
substitutions, to see if any biases could be observed at the amino acid level.  If some 
specific organism level biases could be identified, then it might be possible to relate 
these back to a more fundamental organism level statistic (e.g. GC bias). 
 
Initial work used the BLOSUM matrix generation software [HENIKOFF92] to 
produce substitution matrices from BLOCKS data filtered for each organism, 
however no significant differences in the resultant matrices were evident. 
 
Substitution groups  [WU96] were then considered, as these allow for a more 
sensitive approach to detecting amino acid bias than simply filtering the alignment 
data at the organism level.  Substitution groups could be generated as normal, but 
each organism's contribution to each group member would also be recorded.  This 



approach allows for the detection of organism specific amino acid biases within the 
constraints of each substitution group. 
 
For example, if a given alignment conforms with the substitution group FWY, then 
one might assume that mutations between the three residues F,W and Y at that 
position are effectively synonymous.  Accordingly, any organism-specific mutational 
pressure (e.g. compositional bias, dinucleotide abundance) is free to assume 
organism-specific equilibrium within these boundaries.  If, in this example, we were 
to examine an organism with a high GC bias, then we might expect that organism to 
favour W at a conserved FWY position, as it has the highest GC content of the three 
amino acids.  Such tendency might not be exhibited so clearly elsewhere in the 
alignment, or on average throughout the genome, as more vigorous functional and 
structural constraints would probably outweigh any weak underlying bias. 
 
An alternative substitution group analysis program was derived from [WU96], which 
recorded the relative contribution of different organisms to each amino acid in each 
substitution group.  Only organisms contributing to greater than 20 different 
alignments for each conserved group are included. 

Results 
Result were obtained for substitution groups of size two and three.  The results below 
examine the 6 conserved triplet substitution groups as described in [WU96], namely 
ILV, FWY, EKQ, AST, KQR and FLY. 
 
The first graph shows for each organism how the frequency of each amino acid within 
each substitution group differs in relation to the expected frequency, calculated 
according to the relative abundance each member amino acid in the organism as a 
whole. 
 
e.g. ILV in RAT 
 
RAT I L V 
observed 0.353805 0.301736 0.344459
overall 0.048010 0.099018 0.064413
expected 0.227064 0.468298 0.304638
 
The bias is shown as a percentage of the expected frequency of that amino acid within 
the group, for example Tryptophan (W) occurs 200% more than would be expected in 
FWY for YEAST/ECOLI, but is relatively unbiased for other organisms. 
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In ILV, Leucine(L) is favoured in all organisms, particularly Mouse, Rat and Human. 
Isoleuceine(I) is under-represented to the same degree.  Very little bias is shown for 
Valine by any of the organisms.   A possible explanation at the codon level is that 
Leucine is coded for by 6 codons, whereas Isoleucine has only three. 
 
The FWY triplet shows some extreme biases with Tryptophan (W) over represented 
in all organisms, particularly YEAST and ECOLI.  Phenylalinine (F) is 
correspondingly under-represented in all organisms except MOUSE.  The general bias 
towards Trptophan is probably explained by the fact that it is coded for by just a 
single codon, however it is not clear why W should be so favoured in YEAST and 
ECOLI 
 
EKQ and AST are relatively unbiased for all organisms except YEAST, which is 
strongly positively biased for Glutamine (Q) and Alanine (A) and negatively biased 
for Lysine (K) and Serine (S). 
 
KQR shows MOUSE, RAT and HUMAN with a shared positive bias to Lysine (K) 
and a negative bias to Glutamine(Q), while YEAST and ECOLI are negatively 
correlated.  RAT and HUMAN are both negatively biased towards Arginine(R), 
whereas MOUSE, ECOLI and YEAST demonstrate a positive bias. 
 
Finally, FLY shows some extreme biases which are followed by all organisms;  
Phenylalinine (F) and Tyrosine(Y) are over represented by between 50 and 100%, 
while Lysine(L) is underrepresented to a  corresponding degree.  Again the codon rule 
appears to apply, as F and Y are both coded for by just 2 codons each, whereas L has 
6. 



 
Of the 14 distinct amino acids featured in these triplets, four are present in more than 
one group (QKLF), which allows us to compare biases between groups.  Q follows 
approximately the same bias in both groups, being under represented by MOUSE and 
over-represented by YEAST in both groups (EKQ,KQR).  K is less consistent, even at 
the ordinal level (positive bias first): 
 

•  K:EKQ (MOUSE, HUMAN, ECOLI, RAT, YEAST) 
•  K:KQR (RAT,HUMAN,MOUSE,YEAST,ECOLI) 

 
L is strongly under represented by all organisms in both groups (ILV, FLY) 
 
F is under represented for all organisms in FWY and over represented in FLY, 
however the bias order is broadly preserved (ECOLI and YEAST have least F in both 
groups.) 
 
The second graph shows the root squared distance from the predicted frequency for 
each substitution group. 
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From the group perspective, EKQ and AST are the close to the predicted distance for 
all organisms, except YEAST.  FWY shows the broadest spread of distances, with 
YEAST and ECOLI showing a marked difference from the expected distribution.  At 
the organism level, HUMAN, MOUSE and RAT all demonstrate broadly similar 
biases, as do ECOLI and YEAST. 
 
Although some organism specific biases are evident the underlying causes are 
unclear. 



Codon Substitution Groups 
Following on from the organism-specific amino acid substitution groups, it was 
decided that an investigation at the codon level might provide further clues as to the 
cause of organism specific biases.  This section of the report describes how the 
original approach to amino acid substitution groups described by [WU96] was 
modified to examine codons instead. 
 
The production of Codon Substitution groups was also inspired by an examination of 
the amino acid substitution groups in the context of codon usage, which had revealed 
the conservation of physical properties of the genetic code.  As predicted by Dayhoff 
et al, in addition to having similar amino acid properties noted by [WU96], each 
substitution group also had the property of requiring a minimal number of mutational 
changes in going from one member to another.  For example, it was observed that all 
9 doublet substitution groups identified by the substitution group software are 
separated by a single point mutation. Moreover, of the 6 conserved triplet groups, 3 of 
the groups can substitute via a single point mutation and 2 consist of doublets each 
separated by a single point mutation.  The effect is also visible within larger groups, 
for example all of the amino acids in the FILMV group can substitute via a single 
point mutation at codon position 1. 

Method 
The method builds upon the amino acid substitution group work done by [WU96], 
plus software tools provided by [HUANG01].  The latest version of the BLOCKS 
database [HENIKOFF99] (blocksplus-01Aug01) was used to derive the groups. 
 
A cross-index was built using part of the data from the Codon Usage Database 
[NAKAMURA00], as this provides both the SWISS-PROT protein accession and the NCBI 
accession for the complete nucleotide coding sequence.  A web spider was created so 
that the complete CDS for each blocks protein could be obtained via the NCBI getfeat 
CGI service.  The getfeat service requires the NCBI gi as an argument, so this was 
derived from the NCBI FASTA-format blast nucleotide flatfile DB. 
 
The convert-blocks-to-columns.pl script [HUANG01] was modified so that codon 
columns were produced instead of amino acid columns.  This was achieved by 
multiplying the amino acid offset present with each block record by three to create an 
offset into the DNA sequence.  The conversion was validated by translating the 
resultant DNA sequence back to the amino acid sequence using the standard genetic 
code, which led to a small number of block records being rejected. 
 
The blocks were pre-filtered to exclude SPTREMBL proteins as no index was easily 
available to allow getfeat lookups with these proteins. Additionally, proteins created 
using an alternative genetic code (e.g. mitochondrial proteins) were also excluded to 
ensure that the backtranslation validation operated correctly.  (It would have been 
possible to isolate the translation table using a more sophisticated getfeat spider , 
however time did not allow this.) 
 
The C based amino acids columns processor produced by [HUANG01] is a highly 
optimised program which makes use of bitmaps and large arrays for maximum speed. 
 



It was initially supposed that the program could be modified simply to use bitmaps of 
length 64 to accommodate all possible codon substitution groups.  The bitmap 
assumption was correct, however the program also makes use of several large fixed 
arrays of the order of 220 (1048576), which would need to increase to size 264 to 
accommodate codon data.  It was clear that a more substantial modification would be 
required in order to run the program on available hardware, specifically to convert the 
arrays handling to use sparse arrays. 
 
The software was recoded using Java as this provides a simple mechanism for 
creating sparse arrays (HashMap) and also arbitrary size bitmaps (BitSet).  This 
modification made the software far less efficient, but at least was able to 
accommodate the creation of codon subsitution groups within certain constraints. 
 
Specifically, the number of alignments (columns) that could be processed had to be 
limited (to 50,000 out of a possible 201187).  More significantly, the maximum group 
size that could be processed had to be limited to 8.  It would have been desirable to 
increase this to at least 25, so that the larger amino acid substitution groups (e.g. 
FILVY) could be accommodated in their codon form, however this was not possible 
with the available hardware and time to optimise the software.  A more optimal 
solution would probably be to convert the original C version to use sparse arrays. 

Results 

Pairs 
As would be expected, the most highly conserved codon substitution groups are those 
that code for the same amino acid.  There are 19 significant substitution groups 
containing two codons, coding for 15 out of the 20 possible amino acids. 
 
The first 9 substitution groups all code for amino acids that are represented by only 2 
codons (CHDYEFNKQ). TGT/TGC (Cysteine) is the most significant group.  Of the 
remaining 10 substitution pairs, 7 are from amino acids represented by 6 codons 
(SRLLRSL).  One pair (ATT/ATC) is also present for Isoleucine, which is actually 
represented by three codons in the standard genetic code.   
 
GCT/GCC are present for Alanine, however the other possible pair (GCA/GCG) are 
not significantly conserved.  Similarly, GGT/GGC are present for Glycine, but not 
GGA/GGG. 
 
Not all amino acids are represented as significant two codon substitution groups; 
Valine, Proline and Threonine are all absent.  These three amino acids are coded for 
by 4 codons and so are conserved as higher order substitution groups. 
 
As expected, Tryptophan is also absent as this is only coded for by a single codon. 
 
It was noted that the first 12 significant substitution pairs are all separated by a 
transversion at the third position. 

Triplets 
The most significant triplet is ATT/ATC/ATA and contains all codons for Isoleucine 
from the standard genetic code.  Isoleucine also features as a doublet (codon ATA 



absent), however it is not clear why this doublet group should be conserved in 
preference to the triplet. 
 
The next most significant substitution group (TAT/TAC/TGG) features codons from 
more than one amino acid, specifically Tryptophan and Tyrosine (WY). This pairing 
was not identified as a pair amino acid substitution group in [WU96], however did 
feature as part of larger conserved groups (FWY, FLWY).  The pairing is also 
supported by a score of 2 in the BLOSUM62 substitution matrix. 

Quads 
The 5 most significant groups of four codons represent each of the five amino acids 
coded for by 4 codons (GPTAV).  The compactness of the groups shows an inverse 
correlation with the relative mutability of amino acids as reported in [DAYHOFF78].  
The exception to this is Valine, however this has a relatively high interference score. 
 
TTT/TTC/TAT/TAC (FY) was the most significant amino acid substitution group in 
[WU96] and also scores highly in the BLOSUM62 substitution matrix.   As both 
amino acids are coded from by two codons each, the group contains all possible 
codons for this amino acid pair.  At the codon level, F may mutate to Y (and vice 
versa) through a transversion at the second position. 
 
GAT/GAC/GAA/GAG (DE) was only the third most significant amino acid 
substitution group in [WU96].  The group contains all possible codons for this amino 
acid pair. 
 
GAT/GAC/AAT/AAC (DN), CAT/CAC/TAT/TAC (HY) and GAA/GAG/CAA/CAG 
(EQ) are also conserved as both codon subsitution groups and amino acid substitution 
groups. 
 
IV (the second most significant pair in [WU96]) is only ranked 16 in the codon quads.  
This probably because I and V are coded for by 3 and 4 codons respectively and 
would therefore be conserved in the higher order codon subsitution groups if the 
current version  of the software was able to support them. 

Further work 
Once the software has been updated to cope with larger codon subsitution groups, the 
intention is to further divide the codon alignments along organism level boundaries to 
see if certain organisms favoured a certain type of codon at a conserved position.  
Conserved groups should provide a far more sensitive measure of biases at the DNA 
level, as the degrees of freedom are limited in a controlled manner. 

Conclusion 
The original goal of the project was to determine some organism level statistic that 
could be used to optimise amino acid substitution matrices for search operations 
involving that organism. 
 
Initial experiments involving a neural network were not successful.  The failure can 
probably be attributed to the use of base composition and codon usage data 
aggregated at the organism level, rather than at the level of individual aligned 



proteins.  This is because certain groups of organisms (e.g. mammals) show little 
variation in codon usage at the genome level, but broad variations for each gene.  In 
the case of mammals, therefore, organism level base composition statistics are not an 
accurate predictor of compositional bias at the level of an alignment. The failure was 
exacerbated by insufficient training data given the high dimensionality of the 
conditioning inputs. 
 
The results derived from examining organism specific relative amino acid abundance 
within amino acid substitution groups are far more encouraging, as some organism 
specific biases are evident within the lower dimensionality of each substitution group.   
It seems unlikely, however, that these substitution group biases could be generalised 
into organism specific substitution matrices, as they will be masked by other 
constraints (e.g. structure, function).  The demonstration of organism-specific amino 
acid bias within substitution groups does suggest the possibility of optimising position 
specific substitution matrices and Markov models with organism specific 
probabilities. 
 
The codon substitution group program has also shown some promise, however further 
work is required in order to handle larger substitution groups and organism biases.  
The work done in obtaining the DNA sequences for each BLOCKS alignment also 
provides a good starting point for evaluating the possible effect of dinucleotide 
Markov processes on amino acid substitution group bias. 
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Appendix A - Codon Substitution Matrix Raw Data 
DNA Protein # compact interfere separate norm-sep 
TGT TGC C C 510.00 237.88 8.69 229.19 3.39E+08
CAT CAC H H 520.00 186.81 20.17 166.64 2.47E+08
GAT GAC D D 1293.00 201.23 41.77 159.45 2.36E+08
TAT TAC Y Y 943.00 210.49 54.93 155.56 2.30E+08
GAA GAG E E 1281.00 188.15 35.05 153.10 2.26E+08
TTT TTC F F 1177.00 202.71 63.54 139.16 2.06E+08
AAT AAC N N 867.00 162.92 24.17 138.75 2.05E+08
AAA AAG K K 1075.00 160.70 23.28 137.42 2.03E+08
CAA CAG Q Q 710.00 150.79 19.06 131.73 1.95E+08
AGT AGC S S 314.00 87.76 30.98 56.78 8.40E+07
ATT ATC I I 1096.00 133.39 91.37 42.02 6.22E+07
AGA AGG R R 290.00 94.02 67.28 26.74 3.96E+07
TTG CTG L L 839.00 91.63 72.59 19.04 2.82E+07
TTA TTG L L 568.00 87.12 68.57 18.55 2.74E+07
CGT CGC R R 378.00 113.71 99.56 14.15 2.09E+07
GCT GCC A A 851.00 116.43 105.54 10.89 1.61E+07
TCT TCC S S 445.00 99.29 88.44 10.85 1.61E+07
CTC CTG L L 724.00 83.81 82.20 1.61 2.38E+06
GGT GGC G G 1202.00 178.10 177.62 0.47 7.02E+05
ATT ATC ATA I I I 253.00 91.37 16.81 74.56 1.10E+08
CCT CCC CCA P P P 285.00 180.74 141.64 39.10 5.78E+07
TCT TCC TCA S S S 145.00 88.44 60.84 27.60 4.08E+07
CGT CGC AGA R R R 140.00 99.34 76.49 22.85 3.38E+07
TAT TAC TGG Y Y W 34.00 18.37 10.70 7.67 1.13E+07
GCT GCC GCA A A A 299.00 105.54 99.49 6.05 8.94E+06
GTT GTA GTG V V V 209.00 87.42 83.61 3.81 5.64E+06
GTT GTC GTG V V V 274.00 93.51 91.53 1.99 2.94E+06
TTA TTG CTG L L L 232.00 68.57 67.29 1.28 1.90E+06
TTA TTG CTT L L L 166.00 63.70 62.68 1.03 1.52E+06
GGT GGC GGA GGG G G G G 296.00 200.49 5.16 195.33 2.89E+08
CCT CCC CCA CCG P P P P 156.00 141.64 4.88 136.76 2.02E+08
ACT ACC ACA ACG T T T T 89.00 107.49 6.91 100.58 1.49E+08
GCT GCC GCA GCG A A A A 136.00 99.49 8.71 90.78 1.34E+08
GTT GTC GTA GTG V V V V 102.00 83.61 22.62 60.99 9.02E+07
TTT TTC TAT TAC F F Y Y 69.00 73.88 13.71 60.17 8.90E+07
GAT GAC GAA GAG D D E E 64.00 45.79 7.18 38.61 5.71E+07
AAT AAC GAT GAC N N D D 42.00 39.41 8.42 30.98 4.58E+07
TAT TAC CAT CAC Y Y H H 12.00 31.81 10.30 21.51 3.18E+07
TCT TCC TCA TCG S S S S 56.00 60.84 45.60 15.24 2.25E+07
TTG CTT CTC CTG L L L L 107.00 77.68 64.12 13.57 2.01E+07
AAA AAG GAA GAG K K E E 20.00 15.35 5.74 9.61 1.42E+07
CGT CGC AGA AGG R R R R 55.00 69.28 65.01 4.28 6.33E+06
TTG CTG ATT ATC L L I I 18.00 9.38 7.34 2.04 3.01E+06
CGT CGC CGA AGA R R R R 55.00 76.49 74.79 1.71 2.52E+06
ATT ATC ATA GTT I I I V 35.00 16.81 15.24 1.57 2.33E+06
CAA CAG GAA GAG Q Q E E 17.00 12.72 11.76 0.96 1.43E+06
CTC CTG ATT ATC L L I I 19.00 11.88 10.92 0.96 1.42E+06
ATT ATC ATA ATG I I I M 19.00 8.43 8.25 0.17 2.59E+05
TTA TTG CTT CTC CTG L L L L L 52.00 64.12 58.07 6.04 8.94E+06
ATT GTT GTC GTA GTG I V V V V 29.00 22.62 20.36 2.27 3.35E+06
TCT GCT GCC GCA GCG S A A A A 11.00 8.71 6.73 1.98 2.93E+06
CGT CGC CGA CGG AGA AGG R R R R R R 13.00 67.66 0.00 67.66 1.00E+08
TTA TTG CTT CTC CTA CTG L L L L L L 22.00 53.43 0.00 53.43 7.90E+07
ATT ATC GTT GTC GTA GTG I I V V V V 12.00 20.36 0.00 20.36 3.01E+07
 


