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Abstract

For large structures Molecular Dynamics is computationally expensive and Monte Carlo
is unreliable. Thus, to conduct atomistic simulations we built a Go model, which unites
all forces into a single potential. Using the Go model we simulated the folding, unfolding
and refolding of proteins and RNA. Our results indicate that a Go model is a valid
technique for that purpose. This paper explains how we applied the Go method, showing
why it is a feasible alternative to traditional methods and how it can improved.

This work is based on unpublished data from A Garg, B Nakatani, E Sorin in the Pande
Lab.



Overview

Understanding how molecules fold and unfold is crucial to understand their function.
Modeling the different forces involved in these events can also shed a light on why
molecules misfold and cause disease. Much work has been done in protein folding but
RNA folding remains largely unexplored. Part of the reason is that RNAs are typically
large. Moreover, self-catalytic RNAs (ribozymes) were only discovered a decade ago.
Learning more about RNA folding and its catalytic properties could shed new light on a
range of domains from evolutionary biochemistry to nanomolecular design.

The golden standard for studying folding is molecular dynamics (MD). MD means
calculating the energy and forces and then applying classical mechanics:

Fi = -dEi / dri = mai (integrate)

MD has been invaluable in simulating a molecule’s trajectory in an energy landscape. It
is a powerful technique to model natural processes (eg protein folding) and allows easy
comparison with experimental values.

Perhaps the most widely used alternative is Monte Carlo. Monte Carlo is an analytical
technique in which a large number of simulations are run using random quantities for
uncertain variables. By analyzing the distribution of results one infers which values are
most likely.

Both MD and Monte Carlo have their limitations though. In MD, computational time
increases exponentially with the number of forces being considered. Thus, the complete
folding of even fairly small molecules like a 700-atom RNA hairpin could take thousands
of years. Meanwhile, in Monte Carlo the results’ reliability is a function of statistical
sampling, but the more thorough one is the more computational time it will take. To
overcome these barriers scientists either simplify the molecule (eg coarse-grained model)
or the technique (eg less precise integration). Another alternative is the Go Model1.

In a Go model the molecule is placed in a three-dimensional cube. Each atom is its own
atomtype and all forces are expressed as a single force potential. By design, the native
state is considered the energetic minimum of the model. Because of these simplifications
we increase simulation speed but the data has smaller confidence intervals. The original
Go model was applied to proteins and observed rapid formation of globular centers,
especially if the input is a partially folded state. We believe the model can also be applied
to nucleic acids. A Go model of the same 700-atom RNA hairpin can be done in a matter
of minutes.

The results of a Go simulation are to be interpreted with caution though. The final state
should match the experimental value. Note though the actual trajectory in a Go model
might be one of infinite number of possibilities and not correlate with experimentally
characterized transition states. The benefit though is the simulation is still atomistic,
which can lend powerful insights such as how the folding landscape can be pruned and
how different forces interact in shaping secondary structure.



Method

Our potential is akin to the one used by Ueda et al in their original Go model for proteins.
To build the model we first obtained structural information for the desired molecule (a
pdb file). Parsing the pdb we obtained the interatomic connectivities and distances and
imposed the following potential functions:

Table 1: Potential for the Go Model

Bonds (stretching) Ebonds = _ kb (r – ro)
2 i to i+1 interactions

Angles (bending) Eangles = _ ka (_ – _o)
2 i to i+2 interactions

Dihedrals (torsion) Edihedrals = _ kd [1 + cos(n _ – _’)] i to i+3 interactions

Pair same as dihedrals modify i to i+3 interactions
except those involving H

Coulomb Eelec = _i ≠ j qi qj / rij electrostatic energy
(set to zero)

Non-bonded (NB) Enb = _i ≠ j -Aij / rij
6 + Bij / rij

12 non-bonded interatomic
potential

Other terms Esolv, Eexternal etc. unavailable in PDB and not
considered

Explanation on Terms:

ro, _o, _
’– distance, angle, dihedral from native structure

kb, ka, kd – bond, angle, dihedral constant f/ force field: oplsaa (proteins), amberN (RNA)
Aij, Bij – calculated from _ and _ (explained below)
Pair – we increase the strength of these interactions to bias our model towards folding

(note: having H interactions also would be too constraining so they are not considered)
Coulomb – still allow for a non-zero potential because we unfold using charges
Other Terms – not considered but we might modify the model in the future

The non-bonded interatomic potential is central to the Go potential. It represents the
energetic well for the secondary structure and is modeled as a Lennard-Jones (LJ)
function. We defined NB atoms to be those at least 3 residues apart and the total force to
be zero at equilibrium. The actual LJ potential can be equated as:

where _ = radius at first crossing of zero energy line
_ = constant



We obtained _ by multiplying ro from the structure file by 21/6 (see the Gromacs manual
to understand the conversion) and _ from the force fields2. To distinguish strong non-
bonded interactions we further adopted the following criteria:

Native interactions – a within 5.5 Ang, multiply _ by 10
Non-native interactions – more than 5.5 Ang

For our simulations we used Gromacs, a highly optimized MD package. We further
optimized the code to run a Go simulation. Normally Gromacs calculates NB interactions
and places them in atomtype X atomtype matrix, which in our case means a huge n2

module. Since we subdivided the NB into native and non-native we had it calculate only
the non-native and inputted n native interactions. Furthermore, we restricted the non-
native interactions – only atoms within a specified cut-off distance will experience a NB
force. This effectively reduced the space and memory requirement from O(n2) to O(n).
We also assumed no periodic boundary conditions ie only one molecule so no
intermolecular interactions.

Within the framework of our assumptions we tried to make our model similar to reality.
The simulations were conducted in water-like viscosity (90 - 100 ps-1) by specifying a
tau_t of 0.01:

_ = 1 / _ where _ = frictional coefficient (viscosity)

STP (standard temperature and pressure) conditions were set at 300 K* and 1 atm. For the
integrator we used a stochastic instead of deterministic integrations. Also, we updated the
neighbor list frequently (every 10 steps) so we could account for the change in position of
the atoms. The temperature variables were used to calibrate the model to the molecules
behavior in nature (ongoing work).
                                                
* Technically “standard temperature” is 298 K but we rounded it to 300 K for convenience.

Figure 1: the Lennard-Jones Curve



We also gave random velocities make our model more stochastic. Before every stochastic
run we energy minimized the structure, expecting the molecule to settle into the same
initial state. Thus, given the energetic well is the same, molecules with different random
velocities should still fold to the same native state. We did remove linear rotation to
prevent the molecule from moving out of the box; this does not affect the actual folding
though. Major global conditions are outlined in Table 2.

Table 2: Some Global Conditions used in Go Model Simulations

Integrator sd A leap-frog stochastic dynamics integrator.
dt 0.001 Time step for integration (in ps).
nsteps 10000 Maximum number of steps to integrate.
nstlist 10 Frequency to update the neighbor list (in this case every 10

steps).
ns_type simple Check every atom in the box when constructing a new

neighbor list every nstlist steps.
coulombtype cut-off Twin range cut-off's with rlist <= rvdw <= rcoulomb.
vdwtype cut-off Twin range cut-off's with rvdw >= rlist.
rlist 5 Cut-off distance for the short-range neighbor list.
rvdw 5 Distance for the LJ or Buckingham cut-off.
rcoulomb 5 Distance for the Coulomb cut-off.
epsilon_r 1 Dielectric constant.
pcoupl no No pressure coupling. This means a fixed box size.
gen_vel yes Generate velocities according to a Maxwell distribution.
gen_temp 300 Temperature for Maxwell distribution.
gen_seed -1 Random generator for random velocities.
comm-mode linear Remove center of mass translation.
constraints hbonds Only constrain the bonds with H-atoms.
tcoupl berendsen Temperature coupling with a Berendsen-thermostat.
tau_t 0.01 Time constant for coupling (viscosity = 10 _ water)
tc_grps system Groups to couple separately to temperature bath.
ref_t 300 Reference temperature for coupling.

A Go model is a simplified model. It amalgamates several different potentials – hydrogen
bonds, charges etc – into a single potential. Plotkin has shown this approach works well
for small protein chains and even for larger molecules with over 1000 atoms3. Our
innovation was to apply it also to RNA, which are typically much bigger. Comparing our
preliminary results to experimentally-determined transition states suggests that the Go
model can be applied to nucleics too4.

Results

We define the following terms:

Stability (100 ps) – Simulations from native state _ native state



Unfolding (10 ps)– simulations from native state _ unfolded state using charges.
Charges are an artificial variable and were used primarily to unfold the molecule prior
to refolding simulations.

Refolding (100 ps) – Simulations from unfolded state _ refolded state.

Generally we observed that higher constants (kb, ka, kd) caused molecules to fold quicker.
However, if these were too high in value the structure became too constrained and caused
the simulation to crash. Nonetheless, the driving force in refolding is the LJ interactions.
These are considerably weaker than bonds or angles but their sheer number creates a
large bulk force. Alternate topologies with weak NB forces not only folded slower but
also stabilized at a non-native state, especially in the case of RNA.

Global simulation conditions were sensitive to parameterization. Higher temperatures and
higher viscosity increased the fluidity of the model and thus kinetics but not
thermodynamics. Moderately high values increased folding but too high actually caused
unfolding. nstlist = 10 was also crucial; indeed our early model had an appropriate
parameterization but was still unable to refold because the neighbor list was updated too
infrequently.

Specifically, we used rmsd as our metric and considered rmsd < 1.0 Ang as indicating
strong structural similarity. Table 3 below summarizes the results for four molecules:

Proteins: BBA5, villin headpiece (1qqv.pdb)
RNA: P5Abc region of group I ribozyme (1eor.pdb),

 yeast transfer ribonucleic acid (6tna.pdb)

Table 3: Simulation Results for Selected Molecules

Molecule # Atoms Stability (Ang) Unfolding (Ang) Refolding (Ang)
BBA5 385 0.30 7.56 0.89
Villin 596 0.30 8.90 0.66
RNA hairpin 718 0.90 16.00 2.66

tRNAphe – 1613 atoms
Our original Go model was folding tRNAphe without the secondary helix formation.
Thus, we reduced the bias towards folding by calibrating the native bond _ to
temperature, instead of just multiplying it by 10. The folding proceeded slower but gave
better results. Here are two refolding simulations in movie format:
http://www.stanford.edu/~bjn/6tna/testruns.html.

One can notice the core collapses quickly into an intermediate state. From there, tertiary
contacts form within a highly restricted subset of conformational space. This is akin to
globular intermediates in protein folding and agrees with theory5. Indeed, Russell et al
have shown that a fundamental property of folding is compaction from a highly flexible
and dynamic set of unfolded conformations to a tightly packed functional structure6.
Furthermore our simulations passed though transition states similar to those obtained



experimentally, which suggests that different folding trajectories might share subspaces
in the energy landscape7.

Unfolded Refolded

Discussion

With the current computational resources traditional simulations of molecules larger than
1000 atoms with traditional MD is unfeasible and with Monte Carlo is unreliable. The Go
model provides a simplified but interesting alternative for studying folding trajectories
and restricting the folding sample space. Molecules in nature have charges and are
constantly interacting with other molecules and ions. Incorporating electrostatic potential
into the Go potential and removing intermolecular forces is indeed a major assumption.
As Ueda et al found in the original Go paper, the model “simulates the behavior of
proteins in essence, but not in fine details.”

Another limitation of our Go model is our parameters are too strong. In nature a molecule
randomly crosses the energy barrier and folds or unfolds in the scale of milliseconds to
minutes8. In our model, we folded within a few nanoseconds and could not detect
unfolding in any of the runs. Given that we fold so quickly most likely we will not unfold
even in the millisecond to minute scale. Indeed, our model biased is biased towards
folding because a simulation of a minute would take a few months at best. We have also
realized that constraining the backbone bonds, angles and dihedrals caused the molecules
to fold even faster and might use this to speed simulations for larger molecules.

To keep the benefits of the bias without distorting accuracy we are working to calibrate
the model to temperature. This allows our simulation to behave more similar to nature.
Indeed, preliminary results indicate that our original parameterization of tRNAphe was
constraining the molecule to a natural temperature of 100 K. By calibrating to room
temperature we might be able to observe some unfolding.



One key feature of Go simulation is that it does not map to real time trajectories should
be interpreted with caution. Moreover, the Go potential integrates over discrete units
whereas in nature folding occurs as a continuous function9, 10. In our model, a time step of
1 fs was usually fine but 2 fs typically caused simulations to crash because the atoms
came too close together. Ideally we want to integrate with a smaller time step and for
longer time to approach reality.

Another limitation is based on the software package itself. Gromacs is powerful but not
easy to use or modify. Onuchic has shown that folding depends largely on topology11, 12.
Given the number of factors to consider For instance, hydrogen bonding and hydrophilic
interactions are crucial to RNA secondary structure but Gromacs does not distinguish
these from other factors in the Go potential. Currently only oplsaa is built into Gromacs;
Sorin has been working to incorporate amberN to help in this issue.

Regarding thermodynamics we observed a definite bias towards the native state. Kinetics
though is a more contentious issue. Some claim that optimal folding takes place in an
entropic dominated time scale. Thus, within a certain temperature range proteins will fold
fast roughly independent of size and structural spoecificites13. Others claim that folding
depends largely on geometry and not really dependent on size14. These two predictions
are not mutually exclusive though and we do not have enough results yet to confidently
support any of them.

NB forces provide an interesting consideration for Go kinetics. NB forces are both
repulsive and attractive and assist or hinder folding. Figure 2 illustrates the latter two
regimens:

This diagram shows that a larger number of NB forces does not necessarily mean a faster
or slower folding rate. For instance, too many attractions can actually oppose folding if
they cancel each other. In the tRNA NB forces working in unison are probably
responsible fro the rapid collapse of the core.

b = number of NB interactions
b* = turning point.

adapted from Plotkin

Figure 2: NB forces assisting or hindering folding



Conclusion

Atomistic MD simulations are ideal but currently impractical for large structures.
Alternatives like Monte Carlo provide a statistical sampling but are not nearly as
universal. Traditional simplifications like coarse-grained simulations typically only
highlight general patterns. In this context, the Go model is a feasible alternative to
simulate the folding and refolding of proteins and RNA.

Go results must be interpreted with discretion however. A folding trajectory might lead to
a local minimum and even if it leads to the natural state, the trajectory is not necessarily
the one molecules follow in real life. There is growing evidence that molecules following
several different folding trajectories though and the Go model might be useful to tease the
folding space. Finally the Go model is useful to understand how different forces interact
to produce secondary structure, and might be used for structure prediction in the future.

We are currently refining the model and hoping to try it soon on larger ribozymes. Our
ultimate goal is to perform an all-atom simulation of the Tetrahymena ribozyme, which
contains approximately 11,000 atoms. No group has yet simulated such a large molecule
atomistically. Furthermore, Nakatani developed a 36-sphere coarse-grain model of the
ribozyme in the past and Chu has recently published experimental data on it15. Thus, we
will hopefully have a good standard against which to judge our future work.
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Links

Protein Data Bank (PDB) -- http://www.rcsb.org/pdb/
Tinker -- http://dasher.wustl.edu/tinker/
Gromacs -- http://www.gromacs.org/
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