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Introduction:

Protein crystal structures provide tremendous insight into the complex nature of proteins
because they allow for a greater understanding of how a specific protein works and also
facilitates the understanding of protein homologues. Their importance is illustrated by the
high occurrence of journal articles publishing protein structures in highly respected
journals such as Science and Nature. While the number of known protein crystal
structures has grown significantly over recent years, obtaining crystal structures for
membrane proteins is fundamentally more difficult than for cytoplasmic proteins and so
are there are relatively fewer solved crystal structures for membrane proteins than
cytoplasmic proteins. As of December 2002, there are 17395 Protein Data Bank
structures for proteins solved by both NMR and X-Ray crystallography and only 57 are
integral membrane proteins. Approximately 30% of an organism’s genome codes for a
membrane protein, while only 0.3% of known structures are structures of membrane
proteins. This discrepancy shows that there is a great need for being able to accurately
predict the structure of membrane proteins in particular.

The need to predict protein structure in general has been met with large amounts of effort
being placed on accurately predicting protein tertiary structure.1,2 A more simple step
towards being able to predict protein structures is to predict the secondary structure based
on known primary structure. This venture has had significant gains over previous years
and has been utilized to identify secondary structures like alpha helices and beta strands.3

There have actually been a large number of methods developed to predict protein
secondary structure and there is even a program on the web called EVA at
http://cubic.bioc.columbia.edu/eva/ that actually automatically evaluates the accuracy of
these methods as new protein crystal structures are released! Unfortunately, these
methods are not trained to discriminate between membrane proteins and globular
(cytoplasmic) proteins and do not evaluate methods used to specifically predict
membrane protein structures.

Predicting the structures of membrane proteins is obviously a less general case than
predicting the structures of proteins, but there is a significant deficiency of membrane
proteins structures and thus, focus should be given to specializing in membrane proteins
because the environments in which globular proteins and membrane proteins exist are
quite distinct. Fortunately, researchers have focused on predicting membrane protein
structures and the amount of work spent in this area is not lacking.4 The focus of this
paper is to give a brief review of the methods that are used to identify membrane protein

                                                
1 Al-Lazikani, B., J. Jung, et al. (2001). "Protein structure prediction." Current Opinion in Chemical
Biology 5(1): 51-56.
2 Moult, J. (1999). "Predicting protein three-dimensional structure." Current Opinion in Biotechnology
10(6): 583-588.
3 Rost, B. (2001). "Review: Protein secondary structure prediction continues to rise." Journal of Structural
Biology 134(2-3): 204-218.
4 Rost, B. (2001). "Review: Protein secondary structure prediction continues to rise." Journal of Structural
Biology 134(2-3): 204-218.



secondary structure, in particular alpha helices, and then evaluate 4 different proteins
with known high-resolution structures that represent different classes of proteins. Alpha
helices are chosen as a focus because prediction of alpha helices in membrane proteins is
the most advanced and there are several different methods available. There are not nearly
as many developed methods that can predict the beta barrels of membrane proteins, but
there is at least one Hidden Markov Model based method that was published recently.5

It is obvious from work earlier in this class and experimentation in general, that it will be
difficult to draw concrete information on the quality of these methods based on only 4
proteins. Other groups that have evaluated the accuracy of transmembrane helix (TMH)
prediction methods have gone out of their way to demonstrate the difficulty of evaluating
these methods with sets even as large as 36 high-resolution alpha-helical membrane
proteins.6 In spite of this, an evaluation of the accuracy of several different prediction
methods is important and will be attempted.

Overview of Methods:

Membrane proteins have several characteristics that allow prediction of transmembrane
structures. The first being physical properties such as having regions of hydrophobic
residues that are the transmembrane segments, followed by hydrophilic residues that are
either periplasmic or cytoplasmic flanks to the transmembrane segments. Effectively, this
pattern forms series of alternating hydrophobic and hydrophilic residues. Another
physical property that is characteristic of membrane proteins is something called the
“positive-inside-rule” developed by von Heijne in 1986.7 The “positive-inside-rule” is a
phenomenon characteristic of transmembrane proteins where positively charged amino
acid residues like lysine and arginine have a higher propensity to be in the cytoplasmic
flanking segments of a membrane protein’s sequence. The plausibility of such a
phenomenon is supported by the fact that because a cell is essentially more negatively
charged than it’s environment due to the proton motive force that exists about a cellular
membrane, the movement of a positively charged amino acid residue across the lipid
bilayer would be more difficult than for a negatively charged amino acid residue.

Alpha helices could simply be predicted based on a measure of hydrophobicity using
Kyte-Doolittle hydropathy scales.8 Identification of an alpha helix was done by simply
computing the degree of hydrophobicity for a segment of about 19 amino acid residues,
approximately corresponding to the number of residues needed to span a lipid bilayer,
and discriminating helices from other structures with a minimum threshold
hydrophobicity value.

                                                
5 Martelli, P. L., P. Fariselli, et al. (2002). "A sequence-profile-based HMM for predicting and
discriminating beta barrel membrane proteins." Bioinformatics 18 Suppl 1: S46-53.
6 Chen, C. P., A. Kernytsky, et al. (2002). “Transmembrane helix predictions revisited.” Protein Science
11: 2774-2791.
7 Von Heijne, G. (1986). “The distribution of positively charged residues.” Nature 34: 456-458.
8 Kyte J., R. F. Doolittle. (1982). “A simple method for displaying the hydropathic character of a protein.” J
Mol Biol 157:105-132.



Table 1Kyte-Doolittle Hydrophobicity Values for 20 Amino Acid Residues.

A 1.8 G -0.4 M 1.9 S -0.8
C 2.5 H -3.2 N -3.5 T -0.7
D -3.5 I 4.5 P -1.6 V 4.2
E -3.5 K -3.9 Q -3.5 W -0.9
F 2.8 L 3.8 R -4.5 Y -1.3

A method was then needed to distinguish between membrane alpha helices and globular
alpha helices and this was accomplished with a measure of alpha helix amphiphilicity
developed by Eisenberg.9 Amphiphilicity is a measure of the asymmetry of the
hydrophobicity as you go around the alpha helix with an end on view. Alpha helices in
globular proteins have one side that is predominantly hydrophobic and faces the
hydrophobic core of the protein and one side that is predominantly hydrophilic and faces
the aqueous solvent. Membrane alpha helices, on the other hand, do not have this
amphiphilicity because the protein is in a hydrophobic environment.

Figure 1 End on view of an alpha helix.

The last major tool that greatly enhanced ability to predict alpha helices in membrane
proteins was the use of known membrane alpha helices. Simple statistical preference was
used to calculate the propensity of a given amino acid to be in a membrane alpha helix
and as expected, methods utilizing statistical preference in addition to physical property
scales predicted membrane protein structures more accurately. In current models, known
membrane alpha helices are also used to perform homology alignments and then used as
part of training sets for more complicated models like neural networks and hidden
Markov models.

                                                
9 Eisenberg D., R. M. Weiss, et al. (1982). “The helical hydrophobic moment: a measure of the
amphiphilicity of a helix.” Nature 299: 371-374.



Review of Methods Used For Case Study:

HMMtop 2.0

This hidden Markov method used to predict transmembrane helices and membrane
topology was first published by Gábor Tusnády in 1998.10 The program was updated in
2001 to allow the user to specify segment localization to increase accuracy. This case
study did not take advantage of that user input.

The basis of HMMtop is the hypothesis that different segments of a membrane protein,
those being membrane helix, outside transmembrane helix cap, inside non-membrane
region, inside transmembrane helix cap, and outside non-membrane region, have
differing amino acid compositions. These regions are not found by specifying an ideal
amino acid composition for each segment; however, they are found by specifying an ideal
difference in amino acid composition between segments.

SOSUI 1.0

SOSUI translates as “being hydrophobic” in Japanese. Accordingly, T. Hirokawa
developed the method in Japan in 1996 and published in 1998.11 The basis of SOSUI is
simply a combination of the Kyte-Doolittle hydropathy scale and an amphipathy index
proposed by Hirokawa.

SPLIT 4.0

SPLIT is a simple method based on Kyte-Doolittle hydropathy and was developed by
Juretic.12 The method utilizes a non-linear average of hydrophobicity over a segment that
was trained on known transmembrane helices.

TMHMM-2.0

TMHMM is a hidden Markov model method and was developed by Sonnhammer, von
Heijne, and Krogh.13 The method is much like HMMtop, however it uses seven states
instead of five. Those include the transmembrane helix core, N and C terminal TMH-
caps, long and short cytoplasmic non-membrane regions, and a globular domain state for
the middle of each non-membrane region on the periplasmic side.

                                                
10 Tusnády, G. E., I. Simon. (1998). “Principles governing amino acid composition of integral membrane
proteins: applications to topology prediction.” J Mol Biol 283: 489-506.
11 Hirokawa T., BC. Seah, et al. (1998) “SOSUI: Classification and secondary structure prediction system
for membrane proteins.” Bioinformatics 14: 378-379.
12 Juretic, D., D. Zucic, et al. (1998). "Preference functions for prediction of membrane-buried helices in
integral membrane proteins." Comput Chem 22(4): 279-294.
13 Sonnhammer, E. L., G. von Heijne, et al. (1998). "A hidden Markov model for predicting
transmembrane helices in protein sequences." Proc Int Conf Intell Syst Mol Biol 6: 175-182.



MPEx 2.04

Wimley and White developed the Membrane Protein Explorer to predict transmembrane
helices and topology via hydropathy plots.14 This method is based on a hydropathy scale
developed by Wimley and White.

TMpred

TMpred predicts transmembrane regions and orientation and was developed by Hofmann
and Stoffel in 1993.15 While there is not very much documentation on this method, it
finds TMH segments by combining several weight scoring matrixes that were trained on
TMbase, expert compiled database of TMH segments.

TopPred 2

TopPred utilizes a sliding trapezoidal window, emphasizes the positive-inside-rule, and
evaluates segments based on a hydropathy scale developed by Engelman.16 Gunnar von
Heijne developed the method in 1992.17

MEMSAT

MEMSAT utilizes dynamic programming to maximize expectation and was developed by
Jones.18 The method assigns one of five categories to each residue, those being inside
loop, outside loop, inside helix end, helix middle, and outside helix end. The dynamic
programming then searches through many possible predictions and maximizes the
expectation score, based on experimentally derived data.

TM-Finder

TM-Finder was developed by Liu and Deber in 1999.19 The method is based on
experimental data that measured the propensity of individual amino acids to be in an
alpha helical state with circular dichroism and their hydrophobic character with a HPLC.

                                                
14 White, S. H., Wimley W. C. (1999). “Membrane protein folding and stability: Physical principles.” Annu
Rev Biophys Biomol Struct 28:319-365.
15 Hofmann K., W. Stoffel. (1993). “TMBASE – a database of membrane spanning protein segments.” Biol
Chem Hoppe-Seyler 374: 166.
16 Engelman D. M., T. A. Steitz, et al. (1986). “Identifying nonpolar transbilayer helices in amino acid
sequences of membrane proteins.” Annu Rev Biophys Biophys Chem 15: 321-353.
17 von Heijne, G. (1992). “Membrane protein structure prediction. J Mol Biol 225: 487-494.
18 Dones D. T., W. R. Taylor, et al. (1994). “A model recognition approach to the prediction of all-helical
membrane protein structure ad topology.” Biochem 33: 3038-3049.
19 Liu, L. –P. and C. M. Deber. (1999). “Combining hydrophobicity and helicity: A novel approach to
membrane protein structure prediction. Bioorg & Med Chem 7: 1-7.



PHDhtm and PHDRhtm

PHDhtm utilizes multiple alignments from protein families and a neural network to
identify transmembrane helices and was developed by Rost.20 PHDRhtm is an updated
PHDhtm that utilizes dynamic programming-like algorithm to refine the PHDhtm results
that normally result in transmembrane helices that are too long.

PHDhtm uses a three layer computational method. The first inputs a window of 13 amino
acids and a global alignment to a second layer that is comprised of several different
neural networks that were trained on different sets of data. Some sets are balanced,
meaning that the overall set has a representative number of transmembrane helices, loops,
and other structures. Some sets are unbalanced, meaning they have underrepresented
types of secondary structures. The third layer then reports the final prediction that has the
highest score.

Case Studies:

Experimental Method:

Eleven different methods were used to evaluate the accuracy of four different proteins.

Potassium Ion Channel: KcsA_Strco from Streptomyces coelicolor, a 160 AA membrane
protein with two alpha helices.

Iron(III) dicitrate transport protein: FecA_Ecoli  from Escherichia coli, a 774 AA beta
barrel membrane protein with three short alpha helices.

Sensory rhodopsin II: Bact_Natph from Natronomonas pharaonis, a 239 AA membrane
protein with seven alpha helices.

Aspartate transcarbamylase: PyrB_Ecoli from Escherichia coli, a 310 AA globular
protein.

The last three proteins have crystal structures that could not have been used for training
the prediction methods because they were only released in the past two months. PyrB and
Natph have structural homologues that have solved crystal structures so that may affect
the accuracy of their prediction, favoring methods that train on known transmembrane
helices. KcsA is quite an old protein and has had its structure solved since 1998. Luckily,
the top homologues matches of these proteins were released in 1999 onward and the
majority of the methods were published around 1999. This search was done at
http://www.ebi.ac.uk/msd-srv/ssm/cgi-bin/ssmserver. In addition, most methods were
developed around 1999.

                                                
20 Rost, B. (1996). “PHD: predicting 1D protein structure by profile based neural networks.” Meth in
Enzym 266: 525-539.



The goal of choosing the previous four proteins was to investigate evaluate the methods’
abilities to predict alpha helices in a proteins that are predominantly transmembrane alpha
helices (KcsA and Natph), proteins that are membrane beta barrels and a few alpha
helices (FecA), and a globular protein (PyrB).

Results:

All methods were used with default settings. In cases where two results were given,
representing a conservative prediction and a non-conservative prediction, the
conservative prediction was used.

Graphical views of all predictions have been generated to give an overall impression of
the prediction methods. It is difficult to evaluate which method is the best, however for
Natph, it appears to be SOSUI and for KcsA, it appears to be MPEx. All of the
predictions for FecA miss all the transmembrane helices. Some predictions for PyrB are
able to get 100% correct, however MPEx, TMpred, and TM-Finder incorrectly identify
transmembrane helices in the globular protein. You can also see that some of the misses
correspond to alpha helices in the globular protein.

Figure 2 Prediction of transmembrane alpha helices for Natph.



Figure 3 Prediction of transmembrane helices for KcsA.

Figure 4 Prediction of transmembrane helices for FecA.



Figure 5 Prediction of transmembrane helices for PyrB and one row for globular helices.

A more quantitative way of evaluating the methods is with measures of Matthew’s
correlation coefficient, sensitivity, and precision.

Matthew’s correlation coefficient (MCC) is a measure that is not swayed by the actual
percentage of true positives in a sample and is the most accurate way of evaluating
different methods. Sensitivity is a measure of how many observed positive occurrences
are actually predicted. Specificity is a measure of how many observed negative
occurrences are actually predicted. Precision is a measure of how many predicted
positives are observed positives.

(1.1)

TNSENSITIVITYTPFN=+

(1.2)

TNSPECIFICITYTNFP+

(1.3)

TPPRECISIONTPFP=+

(1.4)



Where TP is true positive, FP is false positive, FN is false negative, and FP is false
positive. All observations were made on a per residue basis in comparison to the
Database of Secondary Structure in Proteins (DSSP) server, which was the gold standard
for each protein.

Table 2 Quantitative results for eleven different prediction methods.

NATPH HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC 0.356 0.475 0.266 0.243 0.318 0.424 0.409 0.157 0.430 0.201 0.284

Sensitivity 0.724 0.828 0.747 0.741 0.764 0.678 0.759 0.540 0.805 0.868 0.667

Specificity 0.686 0.686 0.549 0.529 0.588 0.824 0.706 0.647 0.667 0.314 0.667

Precision 0.887 0.900 0.850 0.843 0.864 0.929 0.898 0.839 0.892 0.812 0.872

KCSA HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC 0.627 0.464 0.577 0.376 0.400 0.163 0.190 0.361 0.430 0.266 0.209

Sensitivity 0.672 0.627 0.716 0.821 0.881 0.463 0.493 0.507 0.687 0.194 0.239

Specificity 1.000 0.871 0.903 0.548 0.484 0.710 0.710 0.871 0.774 1.000 0.935

Precision 1.000 0.913 0.941 0.797 0.787 0.775 0.786 0.895 0.868 1.000 0.889

FECA HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC n/a n/a n/a n/a -0.039 -0.040 n/a n/a -0.019 n/a n/a

Sensitivity 0.000 n/a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Specificity 1.000 n/a 1.000 1.000 0.941 0.938 1.000 1.000 0.986 1.000 1.000

Precision n/a n/a n/a n/a 0.000 0.000 n/a n/a n/a n/a n/a

PYRB HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Sensitivity n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Specificity 1.000 1.000 1.000 1.000 0.872 0.939 0.929 1.000 0.966 1.000 1.000

Precision n/a n/a n/a n/a 0.000 0.000 0.000 n/a 0.000 n/a n/a

This table high lights the top two values in green for KcsA and Natph and the bottom two
values in orange for FecA and PyrB.

Table 3 Quantitative results for eleven predictions for all proteins.

ALL HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC 0.737 0.768 0.730 0.718 0.599 0.532 0.647 0.594 0.712 0.668 0.615
Sensitivity 0.665 0.724 0.693 0.716 0.747 0.580 0.642 0.498 0.724 0.638 0.514
Specificity 0.984 0.980 0.975 0.963 0.890 0.926 0.956 0.978 0.958 0.966 0.981

Precision 0.914 0.903 0.873 0.829 0.630 0.662 0.786 0.853 0.812 0.824 0.874

Predictions for all residues were lumped together to determine an overall best prediction
method.



Table 4 Mean and standard deviation of the evaluation parameters for the prediction methods for
the KcsA and Natph proteins.

Mean HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC 0.492 0.470 0.422 0.310 0.359 0.294 0.300 0.259 0.430 0.234 0.247

Sensitivity 0.698 0.728 0.732 0.781 0.823 0.571 0.626 0.524 0.746 0.531 0.453

Specificity 0.843 0.779 0.726 0.539 0.536 0.767 0.708 0.759 0.721 0.657 0.801

Precision 0.944 0.907 0.896 0.820 0.826 0.852 0.842 0.867 0.880 0.906 0.881

Stand. Dev. HMMtop 2.0 SOSUI 1.0 SPLIT 4.0 TMHMM-2.0 MPEX 2.04 TMPRED TopPred 2 MEMSAT TM-Finder PHDhtm PHDRhtm

MCC 0.192 0.008 0.220 0.094 0.058 0.185 0.155 0.144 0.000 0.046 0.053

Sensitivity 0.037 0.142 0.022 0.057 0.083 0.152 0.188 0.023 0.083 0.477 0.303

Specificity 0.222 0.131 0.250 0.013 0.074 0.081 0.003 0.158 0.076 0.485 0.190

Precision 0.080 0.009 0.064 0.033 0.054 0.109 0.079 0.040 0.017 0.133 0.012

In this table, the KcsA and Natph cases were taken as random independent samples and a
mean value is reported in the table without any weighting.

Discussion:

The results of my own visual guesses of the best prediction method matched the
quantitative results for the Natph protein, but did not match for the KcsA protein.
Although it is nice to look at these pictures to get an understanding of what the methods
are predicting, nothing quantitative can be drawn from visual representation and so it is a
poor method for evaluating the prediction methods.

The quantitative measurements of MCC, sensitivity, specificity, and precision allow for a
more thorough evaluation of the methods. Clearly, the best prediction method for Natph
is SOSUI and the best prediction method for KcsA is HMMtop. These two methods have
the highest evaluation values in the most number of categories for the two proteins.

Surprisingly, these two methods are at the opposite ends of the spectrum in terms of the
manner in which they predict transmembrane helices. HMMtop is a hidden Markov
model and SOSUI is a hydropathy – amphiphilicity model.

Notably, MPEx, TMpred, and TM-finder did the worst with FecA because they predicted
false positives. Although, none of methods were able to positively identify the few
transmembrane helices present in FecA. These same methods also did the worst for PyrB.
MPEx, TopPred, TM-Finder, and TMpred incorrectly predicted transmembrane helices in
the globular protein PyrB. Some of these methods confused globular helices with
transmembrane helices, which can be observed at the C-terminus of the PyrB protein
sequence. Fortunately, these errors were not extreme and all programs did fairly well.

Overall, the two most accurate methods are HMMtop and SOSUI based on the
compilation of residues results. These two methods have the highest evaluation values for
accurately predicting the combination of all residues from all four proteins. This
evaluation method may be faulted by weighting the results of some proteins with more



residues, like FecA, however it retains KcsA’s best predictor SOSUI, and Natph’s best
predictor HMMtop.

A reasoning for why SOSUI and HMMtop are the best and the others do not perform as
well is not as clear as one would hope. SOSUI is a physical property method like TM-
Finder, TopPred, MPEx, and SPLIT. HMMtop is a trained method like PHDhtm,
PHDRhtm, MEMSAT, TMbase, and TMHMM. One could argue that less accurate
physical property methods did not account for the physical properties in an accurate way,
and that the trained methods were either trained incorrectly, or even over trained and so
are only good at predicting proteins that they were trained on. On the other hand, it can
easily be seen that the two best methods have standard deviations that imply that this
analysis cannot significantly distinguish SOSUI and HMMtop from the other methods.

When looking at the averages for the evaluation values, it appears that HMMtop is
slightly better. This would be my expected result because from previous examples in
class where we used hidden Markov model programs to align sequences, hidden Markov
models are able to train for things that we don’t understand and so are sometimes better
than simple techniques. However, an argument can be made that predicting
transmembrane alpha helices is not actually that difficult because of most of the physical
constraints, those being a hydrophobic environment, a limited segment length, and
amphiphilicity are understood and can easily be applied. As mentioned previously, it is
difficult to draw a conclusion that one method is better than another from this analysis
and so it seems that the complicated models, in fact, are just as good as the simple
models.

Recent work by an independent group has claimed that TMHMM is the best prediction
method.21 Interestingly, my results rarely have TMHMM as the best prediction method in
any category. Perhaps an argument can be made again that I did not use unique
membrane proteins, most of the programs were developed even before the structures of
the homologues were released. For example, SOSUI was developed in 1996 and
HMMtop in 1998, so no homologues existed to be trained on at that time.

In addition, the refinement of PHDhtm to PHDRhtm does not make any significant
difference in terms of quantitative accuracy; however, the visual representation of the two
methods does make it look like the refined method would be more accurate.

A final comment that can be made concerns the usability of the different methods. All of
these methods were quite easy to use and provided prompt results, except for PHDhtm
and PHDRhtm. Those two methods took upwards of 12 hours to get results!

                                                
21 Möller, S., M. D. R. Croning, et al. (2001). “Evaluation of methods for the prediction of membrane
spanning regions.” Bioinformatics 17(7): 646-653.



Conclusions:

The reported accuracies of the different methods used to prediction of membrane alpha
helices are quite high and range from 90 to 95% and although it is believed that these
values are much higher than what exists in reality, I was able to observe precisions
around 98% and specificity around 90%.22 These high accuracies are possible because the
lipid bilayer environment actually simplifies the prediction problem by restricting the
allowable lengths of segments and providing an additional parameter governed by von
Heijne’s “positive-inside-rule.” This is a good sign for people who are interested in
membrane proteins.

The results of my case studies show that HMMtop and SOSUI are the most accurate
methods for the prediction of transmembrane helices, however the standard deviations
show that this result may be within the error of the techniques. To improve upon this
result, it may be better to have sampled more proteins; however, I believe that even after
many samples, these prediction methods would actually give results that are quite similar.
Significant gains are not made with more complicated models that incorporate neural
networks, dynamic programming, or hidden Markov models because of fairly good
understanding of what comprises a transmembrane alpha helix.

                                                
22 Chen, C. P., B. Rost. (2002). “State-of-the-art in membrane protein prediction.” Applied Bioinformatics
1: 21-35.


