
Using Blocks in Pairwise Sequence Alignment

Joe Meehan
December 6, 2002

Biochemistry 218
Computational Molecular Biology

Introduction

Since the introduction of dynamic programming techniques in the early 1970’s several
related algorithms have been developed that make it relatively easy to align two
biological sequences, most notably Needleman-Wunsch for global alignments and Smith-
Waterman for local alignments. However, even with these time-tested algorithms, not all
carefully generated alignments are good alignments. It is not hard to generate an
alignment that looks good on paper, but fails to correctly match known sequence
similarities, or which puts gaps in places that almost certainly should not have gaps. The
essential problem is that the alignment programs incorporate no external knowledge of
the sequences being aligned. They have no way of ensuring that similar structures align,
because the known structural information is unavailable to them. The task of
painstakingly evaluating proposed alignments in the light of known biological
information is left to the researcher.

This paper and associated software explore one way in which external knowledge could
be incorporated into pairwise sequence alignment software. A prototype sequence
alignment program is presented which allows the researcher to incorporate information
from databases such as BLOCKS+ or eBlocks into the sequence alignment process, either
as checks against the proposed alignment or as hard constraints on the alignment. Some
example alignments generated by this method are shown, and compared to alignments
generated by similar methods.

The patterns stored in the various block databases do not necessarily represent the same
structural details that a biologist might check in an alignment, but they do represent
conserved subsequences that the biologist would also expect to match in a valid sequence
alignment. Incorporating the knowledge represented in the block databases into the
sequence alignment process might help the biologist generate alignments that are
consistent with current knowledge of protein families.

Program Overview

The program presented here is meant as a prototype implementation for exploring the
inclusion of block information in pairwise sequence alignment. It allows the user to enter
the location of up to five blocks in the two sequences, and uses that information to either
identify the block locations in traditional alignments, or force the alignment of the
identified blocks. Identifying block locations is not difficult to code, but it makes it much
easier for the researcher to identify block mismatches. Forcing the alignment of blocks
shows the researcher how the sequences could be aligned given the constraint that like
blocks must align. The program currently uses a Needleman-Wunsch alignment with

affine gap scores (Durbin et al, 1998), but in theory it is not tied to any particular
alignment algorithm.

Ideally, a pairwise sequence alignment program that used block information would access
a blocks database and find the common blocks in the two sequences automatically, saving
the researcher the time and trouble of doing the searches separately. Due to time
limitations the current prototype does not do the block database searches, but if the
prototype proves useful this would be a worthwhile enhancement.

Similar Approaches

This is not the first attempt to meld motifs and sequence alignments. Two previous efforts
are particularly noteworthy: PHI-BLAST and SWP.

PHI-BLAST (Altschul et al, 1997) is more of a motif driven search engine than a simple
pairwise alignment tool. Given a sequence and a PROSITE-format regular expression
describing a pattern within the sequence, it will search a database for other sequences that
include the pattern and have significant similarity to the sequence. It can then display
pairwise alignments of the found sequences with the initial sequence, aligned around the
supplied pattern. The alignments are based on the BLAST algorithm, and in fact use
much of the same code.

PHI-BLAST differs from the program presented here in its focus on database searches, its
use of regular expressions rather than blocks, and its use of the BLAST local alignment.
However, in its combined use of motifs and sequence alignment it is close in spirit to the
current effort. The results of the current program on an example alignment will be
compared to PHI-BLAST later in this paper.

A paper published earlier this year (Comet and Henry, 2002), presents an algorithm
designed specifically to incorporate patterns into pairwise sequence alignment. The
algorithm, named Smith & Waterman algorithm with Patterns (SWP), modifies the Smith-
Waterman recurrence relation so that alignment choices that result in pattern matches are
given additional weight. Like PHI-BLAST, SWP uses PROSITE-derived regular
expressions as patterns. Unlike PHI-BLAST, SWP does not force pattern matches, but
strongly encourages them through weighting.

The SWP paper makes a number of interesting points. First, it goes to great lengths to
show that the classic Smith-Waterman algorithm does not always align common patterns
in two sequences. After making pairwise Smith-Waterman alignments of all proteins in
all pattern-defined protein families in PROSITE, Comet and Henry conclude that in

general Smith-Waterman correctly aligns patterns when the patterns occur in the regions
of highest similarity between the two sequences. But, two sequences sometimes share
patterns that do not occur in the regions of highest similarity, and in these cases Smith-
Waterman does not always match the patterns. This provides motivation for a pairwise
alignment program that knows about the patterns and will try to match them.

Another interesting point from the SWP paper is that sometimes two sequences have
patterns in common, but the patterns do not occur in the same order in both sequences
due to inversion. In this case, the biologist’s natural tendency to force the alignment of
both patterns cannot succeed. SWP cannot match both patterns either, so it chooses which
pattern to align according to the strength of the matches between the two patterns.

A third point, and a complicating factor for the alignment algorithm, is that matches to the
same PROSITE regular expression in two sequences can have different lengths, because
regular expressions can contain variable length subpatterns such as x[6,8]. Much work on
SWP was devoted to developing appropriate algorithms for aligning variable length
patterns.

Program Design

The current program allows a researcher to enter two protein sequences and identify the
locations of up to five common blocks within the two sequences. It allows the researcher
to specify a gap penalty and a gap extension penalty, and choose from a small set of
substitution matrices. A check box is used to select one of two program behaviors, either
force the specified blocks to align, or simply show the block locations in the alignment to
see if they match and where mismatches occur.

The program performs a Needleman-Wunsch global alignment with affine gap scores as
described by Durbin, however other global alignments could be easily supported. Local
alignments could also be supported with modifications to the routines that show block
locations, as these routines currently assume that the entire sequence appears in the
alignment.

Unlike SWP, pattern information in this program is added to sequence alignment without
any modification to the basic alignment algorithms. In fact, the basic alignment routines
are taken without modification from Peter Sestoft’s match2 code (Sestoft, 1999) based on
the Durbin book. Sestoft’s code was enhanced in the following manner:

• The user interface was completely rewritten to allow entry of block information,
gap penalty, gap extension penalty, substitution matrix, and the option to force
alignments.

• A new substitution matrix, Blosum30, was implemented in addition to the
provided Blosum50 matrix.

• The routine that displays alignments was greatly enhanced to include display of
block locations, to mark identities with a bar character (“|”), to insert line breaks
after 50 characters, and to display the location within a sequence at the end of each
line.

• New top-level logic was added above the alignment routines to implement the
forced alignment of blocks as described below.

If the researcher does not choose to force block alignments, the program performs a
normal alignment, but adds symbols to the alignment display to indicate where the blocks
are located within each sequence. Each block is labeled by a block number, from 1
through 5, in the alignment display.

This is a simple addition to the alignment display, but it makes it much easier for the
researcher to determine if a normal alignment will align the blocks, and whether it has
placed any gaps within blocks. Also, it makes it easy for the researcher to experiment
with different gap penalties and gap extension penalties to see if changes there will affect
the block alignments. (They quite often do.)

If the blocks do not align, the researcher can choose to force block alignment. In this case,
the program partitions the sequences into subsequences defined by the blocks, and aligns
each partition separately. For instance, if two sequences share one block, the program will
first perform an alignment of the subsequence before the block, then it will display the
matched block, and finally it will align the subsequence after the block. By extension, if
there is more than one block, the program will align subsequences between corresponding
blocks until there are no more blocks, and finally it will align the ends of the sequences.

Again, this is a somewhat simplistic approach. It merely automates what Comet and
Henry call, “the method used by biologists which consists in forcing the alignment of
occurrences of motifs.” They note that forcing alignments in this way does not handle
cases of inversion where two blocks appear in both sequences, but in a different order. In
such a situation, SWP cannot align both blocks, but it does automate the choice between
the two. It is not clear how often this situation occurs; however, the current program

could be modified to detect the disordered blocks and either refuse to do the alignment or
choose which block to use based on the strength of the block similarity.

Using the Program

The program is accessible via the worldwide web at
http://www.stanford.edu/~jmeehan/AlignBlocks.html. It is implemented as a Java applet,
and requires a Java virtual machine to run. Most modern browsers support Java natively
or support a plug-in from Sun (http://java.sun.com/getjava/download.html). The applet
architecture was chosen for this prototype because it has few dependencies on the
browser and web server, a desirable feature when the programmer controls neither the
browser nor the web server.

There are some unfortunate limitations of the applet architecture that make the prototype
awkward at times. Most notably, paste and copy functions are only supported by the
keyboard equivalents, Control-V and Control-C on Windows machines, or Command-V
and Command-C on Macintosh, rather than as normal GUI menu options. This limitation
can be overcome by signing the applet, but since signing is browser-dependent it was not
implemented in the prototype. Also, because the Java byte code must be downloaded and
run locally, the program is can slow, especially on slow machines.

A production version of the program would be better implemented as a Java servlet or
Java Server Page (JSP). Either option would require support of the web server.

An Example

The Cystatin family of cysteine protease inhibitors, PROSITE entry PS00287, is a family of
over 50 protein sequences that have previously been shown to be evolutionarily related
(Rawlings et al, 1990). Since the family was originally defined several new members have
been discovered (Cornwall et al, 1999). This sort of situation should be a good application
for block-aware pairwise sequence alignment, because there are new members to a family
with well-defined blocks.

Here we compare the sequences of CYTC_HUMAN, an original family member used in
block definitions, with CST8_HUMAN, a newly discovered family member that does not
appear in the block definitions. In order to facilitate comparison between the current
program and PHI-BLAST, the eBlocks program (Su et al, 2002) was used to search both for
common blocks and common regular expression motifs. One common block was found
(P22085G3B1), as well as one common motif (LxFx[ILMV]xExN[KR]x[ST]xD). The block
locations are as follows:

CYTC_HUMAN CST8_HUMAN
Block Name Start – End E-Value Start - End E-Value
P22085G3B1 41 - 66 4.56e-14 37 - 62 8.75e-02

After entering the block location for both sequences into the program, an initial alignment
was performed. A Blosum30 matrix was used because Cornwall reports a 27% sequence
similarity (Cornwall et al, 1999). As can be seen below, the program shows that the
alignment introduces a gap in CST8_HUMAN that causes the blocks to be misaligned.
(The top sequence is CYTC_HUMAN.)

Gap Penalty 16 Gap Extension 4 Blosum30 substitution matrix

AFFINE GLOBAL:
Score = 280
 1111111111
MAGPLRAPLLLLAILAVALAVSPAAGSSPGKPPRLVGGPMDASVEEEGVR 50
| | || | | | | | || |
MPRCRWLSLILLTIPLALVARKDPKKNETGVLRKL--KPVNAS--NANVK 46
 11111 11111
1111111111111111
RALDFAVGEYNKASNDMYHSRALQVVRARKQIVAGVNYFLDVELGRTTCT 100
 | || |||| | | | | | | ||| | |
QCLWFAMQEYNKESEDKYVFLVVKTLQAQLQVTNLLEYLIDVEIARSDCR 96
1111111111111111

KTQPNLDNCPFHDQPHLKRKAFCSFQIYAVPWQGTMTLSKSTCQDA 146
| | |||| ||| | || | | | ||
KPLSTNEICAIQENSKLKRKLSCSFLVGALPWNGEFTVMEKKCEDA 142

In this case, it is possible to modify the alignment parameters to bring the blocks into
alignment without using the force blocks option. For instance, simulating the original
Needleman-Wunsch algorithm by raising the gap extension penalty to match the gap
penalty of 16 has this effect:

AFFINE GLOBAL:
Score = 259
 1111111111
MAGPLRAPLLLLAILAVALAVSPAAGSSPGKPPRLVGGPMDASVEEEGVR 50
| | | | | | || | |
M--P-RCRWLSLILLTIPLALVARKDPKKNETGVLRKL-KPVNASNANVK 46
 1111111111

1111111111111111
RALDFAVGEYNKASNDMYHSRALQVVRARKQIVAGVNYFLDVELGRTTCT 100
 | || |||| | | | | | | ||| | |
QCLWFAMQEYNKESEDKYVFLVVKTLQAQLQVTNLLEYLIDVEIARSDCR 96
1111111111111111

KTQPNLDNCPFHDQPHLKRKAFCSFQIYAVPWQGTMTLSKSTCQDA 146
| | |||| ||| | || | | | ||
KPLSTNEICAIQENSKLKRKLSCSFLVGALPWNGEFTVMEKKCEDA 142

A PHI-BLAST search given the CYTC_HUMAN sequence and the common motif
identified by eMotif (Huang et al, 2001) does indeed find the CST8_HUMAN sequence
and generates a local alignment. (In PHI-BLAST the matched pattern is indicated by
asterisks.)

Score = 54.1 bits (150), Expect = 7e-16
 Identities = 39/108 (36%), Positives = 61/108 (56%), Gaps = 2/108 (1%)

Query: 39 PMDASVEEEGVRRALDFAVGEYNKASNDMYHSRALQVVRARKQIVAGVNYFLDVELGRTT 98
pattern 53 **************
 P++AS V++ L FA+ EYNK S D Y ++ ++A+ Q+ + Y +DVE+ R+
Sbjct: 37 PVNAS--NANVKQCLWFAMQEYNKESEDKYVFLVVKTLQAQLQVTNLLEYLIDVEIARSD 94

Query: 99 CTKTQPNLDNCPFHDQPHLKRKAFCSFQIYAVPWQGTMTLSKSTCQDA 146
 C K + C + LKRK CSF + A+PW G T+ + C+DA
Sbjct: 95 CRKPLSTNEICAIQENSKLKRKLSCSFLVGALPWNGEFTVMEKKCEDA 142

PHI-BLAST matches the common pattern and builds the rest of the alignment around the
match. Note that PHI-BLAST inserts the same gap in CST8_HUMAN as the unforced
affine global alignment. This is because the regular expression motif used for the PHI-
BLAST search is shorter than the block definition, and the location where the gap is placed
lies within the block, but outside the regular expression.

This paper will take as a working assumption the supposition that the better a block’s E-
Value, the less appropriate it is to place a gap within it. The E-Value of the eMatrix (Wu,
et al, 1999) block used here, 8.75 e-02, is good enough to suggest that alignments which
preserve the block should be favored. However, much better E-Values are sometimes
seen, and this one may not be high enough to require a strict block match.

Another Example

Comet and Henry use an example from the PROSITE family PS01288, which has four
members in Swissprot release 35. They focus on a pairwise alignment between two
members, RTCB_ECOLI and Y682_METJA, which share several patterns that normal
Smith-Waterman does not correctly align.

A search of the eBlocks database did not reveal any shared blocks or regular expressions
between the two sequences, probably because the family is too small to merit inclusion in
the database. However, a search of the Blocks+ database (Henikoff, et al, 1999) did find a

family, IPB001233, which corresponds to PROSITE family PS01288 and contains both
sequences. The family has 5 blocks, all of which are found in both sequences:

RTCB_ECOLI Y682_METJA
Block Name Start – End E-Value Start - End E-Value
IPB001233A 29 – 64 2.4e-20 46 – 81 1.8e-30
IPB001233B 65 – 78 1.1e-06 85 – 98 1.8e-11
IPB001233C 159 – 172 7.4e-09 682 – 695 1.5e-09
IPB001233D 176 – 215 9.5e-22 713 – 752 1.4e-28
IPB001233E 216 – 247 5e-15 753 – 784 4.9e-26

In some respects, this example seems like a poor choice for the current program.
Y682_METJA is a much longer sequence than RTCB_ECOLI, so a global alignment will
never have a high score. Nonetheless, the sequences and blocks were entered into the
program and an alignment was run.

Surprisingly, the block alignments were very close. The last three blocks, located near the
end of both proteins, aligned perfectly. The second block, near the beginning, also aligned
perfectly. This agreement between the four blocks lends credence to the otherwise
dubious global alignment. However, there was a small problem with the first block. A
gap was inserted near the end of the first block in the RTCB_ECOLI sequence that caused
a mismatch with the corresponding block in Y682_METJA. Since the proteins are so long,
the full alignment is left to an appendix, however the troublesome spot is shown below.

 11111
MNYELLTTEN--------------APVKMWTKGV---PVEADARQQLINT 33
| | | | | |
MKDVLKRVSDVVWELPKDYKDCMRVPGRIYLNEILLDELEPEVLEQIANV 50
 11111

1111111111111111111111111111 11122222222222222
AKMPFIFKHIAVMPDVHLGKGSTIGSVI---PTKGAIIPAAVGVDIGC-- 78
| | | | ||||| | | || | | | | || || |
ACLPGIYKYSIAMPDVHYGYGFAIGGVAAFDQREGVISPGGVGFDINCLT 100
1111111111111111111111111111111 22222222222222

Since all the other blocks match perfectly, and the E-Value for this block is an exceptional
2.4 e-20, it seems reasonable in this case to force the blocks to align. Calculations from the
Blosum50 matrix indicate that this will only lower the total score by 3 points. (Scores
shown with the force blocks option are for the particular subsequence.)

BEFORE BLOCK:
Score = -70
MNYELLTTEN--------------APVKMWTKGV---PVEADARQ 28
| | | |
MKDVLKRVSDVVWELPKDYKDCMRVPGRIYLNEILLDELEPEVLE 45

BLOCK:
Score = 102
QLINTAKMPFIFKHIAVMPDVHLGKGSTIGSVIPTK 36
| | | | | | ||||| | | || |
QIANVACLPGIYKYSIAMPDVHYGYGFAIGGVAAFD 36

BEFORE BLOCK:
Score = -24
--- 0

QRE 3

BLOCK:
Score = 58
GAIIPAAVGVDIGC 14
| | | || || |
GVISPGGVGFDINC 14

Direct comparison to SWP is difficult, because it fits a number of small patterns that are
not reflected in the block databases. However, SWP does use a pattern corresponding
closely to Block 1 above and a smaller pattern comes into play in the area covered by
Block 2. This portion of the SWP alignment appears below. (It was carefully cut from an
electronic copy of the paper using Adobe Acrobat.)

The two patterns matched by SWP have rectangles drawn around them. The first pattern
corresponds to Block 1, but is 6 residues shorter. Nonetheless, the 6 residues following
the pattern do align in SWP exactly the way they do in the forced block alignment.

Block 2 is more problematic. The first part of Block 2 is not represented by a pattern in
SWP, but it begins immediately after the first gap in RTCB_ECOLI (the top sequence) and
continues on in correct alignment for 8 residues. Then something unusual happens.
Where both the unforced global affine alignment and the forced alignment continue
matching Block 2, SWP inserts a very long gap in RTCB_ECOLI, so that it can match the
next 6 residues to a small pattern over 200 residues away in Y682_METJA. The E-value of
Block 2 in RTCB_ECOLI is a respectable 1.1e-06, so splitting the block down the middle to
match such a distant pattern seems hard to justify.

The ability to introduce long gaps to connect distant similarity regions is a feature of SWP
controlled by the weight given to the patterns. Unfortunately, the above example may
indicate that this feature is a two-edged sword. The weights that give SWP the ability to
reach across long gaps to match known patterns may also give it the ability to overlook
unknown patterns, even when they are very close. In this case, continuing to match Block
2 would have resulted in more identities than matching the far off pattern. Since Block 2
was not presented to SWP as a regular expression pattern, matching it became less
rewarding than inserting a 200 residue gap to match a known pattern.

The difficulty of choosing the appropriate weights for patterns is well known to the
authors of SWP, and is cited as an area in need of further work. The above example is
therefore not an indictment of the whole approach, but merely a reason for careful
application of the algorithm. In this case, the availability of an alignment program
incorporating block information serves as a useful check on the SWP alignment.

Discussion

The prototype pairwise sequence alignment program presented here is similar to existing
pattern-aware alignment programs with some important differences. It differs primarily
in its use of blocks rather than regular expressions, and in its use of a global alignment
algorithm rather than local alignment. It also offers the option of merely showing block
alignments rather than forcing them, which can be useful in evaluating traditional
alignments.

The use of blocks instead of regular expressions has some advantages. It avoids the
problem of making alignments within variable length matching patterns that affects SWP.
Also, it takes good advantage of the publicly available blocks databases such as

BLOCKS+, which appear to be more comprehensive than many regular expression
databases.

The prototype program effectively brings the information now available in block
databases to bear on pairwise sequence alignments. It makes it easy for the researcher to
confirm the alignment of matching blocks or notice discrepancies that might deserve
further investigation. And, in some cases, it can serve as a useful check on other
alignment methodologies.

The addition of block information to the pairwise alignment process is not a silver bullet
that instantly resolves all alignment problems. However, it does bring a new dimension
to the task that can be helpful in assessing and guiding alignments. For this reason, it
could be a useful addition to the researcher’s toolkit, especially when used to complement
existing alignment programs that use regular expressions.

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 25, 3389-3402.

Comet, J.-P., Henry, J. (2002) Pairwise sequence alignment using a PROSITE pattern-
derived similarity score. Computers and Chemistry 26, 421-436.

Cornwall, G.A., Hsia, N., Sutton, H.G. (1999) Structure, alternative splicing and
chromosomal localization of the cystatin-related epididymal spermatogenic gene.
Biochem. J. 340, 85-93.

Durbin, R., Eddy, S., Krogh, A., Mitchison, G. (1998) Biological Sequence Analysis.
Cambridge University Press.

Henikoff, S., Henikoff, J.G., and Pietrolovski, S. (1999) Blocks+: a non-redundant database
of protein alignment blocks derived from multiple compilations. Biochemistry 15, 471-479.

Huang, J.Y. and Brutlag, D.L. (2001) The eMotif database. Nucleic Acids Res. 29, 202-204.

Rawlings, N.D., Barret, A.J. (1990) Evolution of proteins in the cystatin superfamily. J.
Mol. Evol. 30, 60-71.

Sestoft, P. Programs for Biosequence Analysis (1999) http://www.dina.kvl.dk/~sestoft/bsa.html

Su, Q., Lu, L. and Brutlag, D. (2002) http://fold.stanford.edu/eblocks/

Wu, T.D., Nevill-Manning, C.G., and Brutlag, D.L. (1999) Minimal-risk scoring matrices
for sequence analysis. Journal of Computational Biology 6, 219-235.

 Appendix – The full alignment of RTCB_ECOLI and Y682_METJA

RTCB_ECOLI Y682_METJA
Block Name Start – End E-Value Start - End E-Value
IPB001233A 29 – 64 2.4e-20 46 – 81 1.8e-30
IPB001233B 65 – 78 1.1e-6 85 – 98 1.8e-11
IPB001233C 159 – 172 7.4e-09 682 – 695 1.5e-09
IPB001233D 176 – 215 9.5e-22 713 – 752 1.4e-28
IPB001233E 216 – 247 5e-15 753 – 784 4.9e-26

Gap Penalty 16 Gap Extension Penalty 4 Blosum 50 Matrix

AFFINE GLOBAL:
Score = -1638
 11111
MNYELLTTEN--------------APVKMWTKGV---PVEADARQQLINT 33
| | | | | |
MKDVLKRVSDVVWELPKDYKDCMRVPGRIYLNEILLDELEPEVLEQIANV 50
 11111
1111111111111111111111111111 11122222222222222
AKMPFIFKHIAVMPDVHLGKGSTIGSVI---PTKGAIIPAAVGVDIGC-- 78
| | | | ||||| | | || | | | | || || |
ACLPGIYKYSIAMPDVHYGYGFAIGGVAAFDQREGVISPGGVGFDINCLT 100
1111111111111111111111111111111 22222222222222

-- 78

SNSKILTDDGYYIKLEKLKEKLDLHIKIYNTEEGEKSSNILFVSERYADE 150

-- 78

KIIRIKTESGRVLEGSKDHPVLTLNGYVPMGMLKEGDDVIVYPYEGVEYE 200

-- 78

EPSDEIILDEDDFAEYDKQIIKYLKDRGLLPLRMDNKNIGIIARLLGFAF 250

------------------------------------GMNALR-------- 84
 | | |
GDGSIVKENGDRERLYVAFYGKRETLIKIREDLEKLGIKASRIYSRKREV 300

-- 84

EIRNAYGDEYTSLCEDNSIKITSKAFALFMHKLGMPIGKKTEQIYKIPEW 350

------------------------------------TALTAEDLPENLAE 98
 | | | || |
IKKAPKWVKRNFLAGLFGADGSRAVFKNYTPLPINLTMSKSEELKENILE 400

LRQAIETAVPH--------------GRTTGR------------------- 115
 | || |
FLNEIKLLLAEFDIESMIYEIKSLDGRVSYRLAIVGEESIKNFLGRINYE 450

----------------------------C-KR-----DKGAWENPPVNVD 131
 | || || |
YSGEKKVIGLLAYEYLRRKDIAKEIRKKCIKRAKELYKKGVTVSEMLKMD 500

--------------AKWAELEAGYQWLTQKYPRF---------------- 151
 | | | | |
EFRNEFISKRLIERAVYENLDEDDVRISTKFPKFEEFIEKYGVIGGFVID 550

--LNTNNYK--- 158
 || |
KIKEIEEISYDSKLYDVGIVSKEHNFIANSIVVHNCGVRLIRTNLTKEEV 600

-- 158

QSKIKELIKTLFKNVPSGLGSKGILKFSKSVMDDVLEEGVRWAVKEGYGW 650

 33333333333333
-------------------------------HLGTLGTGNHFIEI----- 172
 || || |||| |
KEDLEFIEEHGCLKDADASYVSDKAKERGRVQLGSLGSGNHFLEVQYVEK 700
 33333333333333
 44444444444444444444444444444444444444
CLD---------ESDQVWIMLHSGSRGIGNAIGTYFIDLAQKEMQETLET 213
 | | || | |||| | | | |
VFDEEAAEIYGIEENQVVVLVHTGSRGLGHQICTDYLRIMEKAAKNYGIK 750
 44444444444444444444444444444444444444
4455555555555555555555555555555555
LPSRDLAYFMEGTEYFDDYLKAVAWAQLFASLNRDAMMENVVTALQSITQ 263
|| | || | | || | || |
LPDRQLACAPFESEEGQSYFKAMCCGANYAWANRQMITHWVRESFEEVFK 800
4455555555555555555555555555555555

KTVRQPQTLAMEEINCHHNYVQKEQHFGE----EIYVTRKGAVSA----- 304
 || || | | |||| |
IHAEDLEMNIVYDVA--HNIAKKEEHIIDGRKVKVIVHRKGATRAFPPKH 848

--------RAGQYGIIPGSMGAKSFIVRG--LGNEESFCSCSHGAGRVMS 344
 || |||| || | || | | | ||||| |
EAIPKEYWSVGQPVIIPGDMGTASYLMRGTEIAMKETFGSTAHGAGRKLS 898

RTKAKKLFSVEDQIRATAH--VECRKDAEVI--DEIPMAYKDIDAVMAA- 389
| || || | | | | | ||| | |
RAKALKLWKGKEIQRRLAEMGIVAMSDSKAVMAEEAPEAYKSVDLVADTC 948

-QSDLVEVIYTLRQVVCVKG 408
 | ||
HKAGISLKVARMRPLGVIKG 968

