eMOTIF Maker: Nodally Awesome:

Comparing Results of eMOTIF Maker with

Neighbor-Joining Trees

Biochemistry 218

Douglas L. Brutlag
Lee Kozar

6/6/02

Pei-Hsien Ren

pren@stanford.edu

Phylogenetic trees are useful in determining the relationship among proteins and in grouping proteins into their correct family. Protein families have been helpful in elucidating the function and structure of new protein members. In principle, the tree building programs that are distance-based generate pairwise alignments of each sequence against all other sequences in the set. The mutation distances between all pairs are the stored in a matrix. Two taxa are joined as neighbors if the pair has the least mutational distance. The optimal tree is finally generated after minimizing mutation distances at each step (1).

A quite different program from that of tree-building also makes use of alignment of closely related proteins. eMOTIF maker takes these sequence alignments and returns a set of motifs with various degree of sensitivity and specificity. This is a way to discover motifs that are conserved among a protein family (2). Using this group of motifs to perform a scan in the database returns hits that should include members used to generate that motif or additional members containing that motif. The compiled result would vary according to the sensitivity and the specificity of the motif. Because of the similarity of approach used in both tree-building and motif-building, albeit for different purposes, this project would seek to do a proof-of-concept experiment to investigate how well the results from these two programs match up.

Out of the distance-based methods to build a tree, neighbor-joining proves to be very efficient in generating the best tree for large data set (3). In addition, neighborjoining does not require the data to be ultrameteric and produces less biased tree when given sequence data that have unequal evolutionary rate (4). These characteristics of neighbor-joining make it the suitable tree-building method used in this experiment.

In order to make motifs out of related proteins, ungapped alignment of their sequences must be generated so the alignment can be input into eMOTIF maker. Block Maker program is used in this experiment to produce these alignments (5). Block Maker is chosen because of its ease of use and manipulation of formatted result.

The obtained blocks of sequence alignment are then put into eMOTIF maker and the result is a graphical representation of motif enumeration, showing each motif positioned according to its specificity on the y-axis and the number of training sequences it covers on the x -axis (2). If one seeks for a motif that covers a certain number of sequences, there is only one motif that can give the best specificity and that is the one that lies lowest on the y-axis. If one seeks for a motif with a certain specificity, there is also only one motif that gives the best coverage and that is the one that lies on the most right on the x -axis. These dominating motifs can then be connected by a line called the Paretooptimal curve (2). Motifs lying on the Pareto-optimal curve are then used for subsequent motif scan in this experiment.

Two training sets, each with 100 sequences or more, are used to compare the neighbor-joining tree with the results of a motif scan. Motif scan done with a motif with the highest specificity should have the least coverage and its hits should correspond to a small cluster under few nodes in the tree. This small cluster would contain sequences that are the most related to each other. Motif scan done with a low specificity motif should return high number of hits that correspond to sequences under more number of nodes.

One of the two training set is derived from the globin family, heme-containing orthologous proteins, all of them are vertebrate proteins. The set composes mostly of alpha chains, beta chains, and their variants with a few myoglobins. See Appendix for a
complete list of the set (6). The large number of alpha and beta chains should return trees with nodes where most, if not all, of the sequences clustered according to the type of chains.

The second training set is derived from a subfamily of the serine proteases family - trypsin family with the serine active site. The set composes of mast cell proteases, trypsins, and various forms of venom serine proteases. See Appendix for a complete list of the set (7). This paralogous family has various proteins that although acts to cleave proteins, do not share functions in the same context and would probably cluster according to their functions in context. There has been some difficulty in choosing members of this training set because each protein member of the family has diverged much. Even if the active sites are very similar, the global sequence alignment is impossible because the majority of the sequences are too different form each other. This training set attempts to include members that are very similar in both sequence and function within a subgroup but also to include three different, divergent functions of serine proteases.

RESULTS

With the orthologous set as the input, the neighbor-joining method produces a tree that places most of beta chains and their variants as the outgroup to alpha and myoglobin. See Figure 1. All and only the myoglobins fall under one main node and so do the alpha chains. The beta chains are dispersed and there is no one node under which all the beta chains fall and they have given rise to many other variants of hemoglobins. Some of them have evolved from the same ancestral sequence that gives rise to the alpha chains. One pair that is closest to alpha chain in distance is the hbb1_torma and hbb2_torma.

Although they seem to be quite close in distance to the alpha cluster, biochemical and
structural data from the database have identified the two proteins as beta chains (6). The representation of the tree may seem as if the hbb1 and hbb2_torma evolve from alpha chains but the tree actually shows that they and the alpha chains split from the same ancestral sequence derived from the other beta clusters.

Looking at the tree again, one can also see certain isolated groups, such as the epsilon chains, that branch off close to the root between two subtypes. That could be an indication of recombination. Overall, the tree seems to be reasonable and there is no one particular pair that seems misplaced.

The same training set is submitted to Block Maker for alignment and two blocks are generated that covers all sequences in the training set (Table 3). EMOTIF maker uses these two blocks to make motifs. Graph enumerating all the motifs from various blocks are in the appendix. 7 random motifs are sampled for subsequent motif scan.

For the first block, the most specific motif returns most of the sequences that lie to the left of the red line marked on the tree (Fig 1). They are mostly beta and epsilon chains and fetal forms of hemoglobin. The beta- 1 and beta- 2 variants, bracketed by purple brackets in Fig. 1, are not picked up by the first motif. The second most specific motif returns some more sequences that are missed by the first motif. The sixth motif, ranked in terms of its specificity, returns more beta and epsilon chains from chick that are not picked up by the first motif. They lie between the two green vertical lines marked on the tree. It is not until the $30^{\text {th }}$ motif that the beta-1 and -2 chains are picked up. It is not until the $51^{\text {st }}$ motif that the alpha chains are picked up. The $51^{\text {st }}$ motif picks up all most of the alpha chains that lie between the two blue lines.

In an attempt to present quantitatively the correlation between the motif specificity and the tree clusters, a hypothetical set is devised. This hypothetical set is a group of sequences that fall under a particular node of the tree of which a majority of sequences are hits of a motif of a particular specificity. If roughly more than 50% of the sequences are picked up by a motif, every sequence under that node is included in the set. For example, all sequences between the two green lines are included in a hypothetical set belonging to the sixth motif. Similar method is applied to the sequences covered by the purple brackets and so on. Since there are numerous nodes and isolated branches between subtypes, the set is designed arbitrarily and by eye. The quantification should only be seen as a rough characterization from looking at the tree. Results are summarized in

Table 1.

After repeating the same process with block 2, one can see that the results are quite different by comparing figure 1 to figure 2 . Block 2 is an alignment more internal to the sequence since block 1 lies to the n-terminus of block 2 . An alignment derived from more internal sequences may be a better correlation with the variant characteristics of the protein function. One can see that the block 2 picks up many more clusters, with each cluster having fewer nodes than block1. Hence, it is more specific. Looking at the results summarized in Table 2, the percentages of positive hits are higher than those in Table 1. Block 2 also does not have the characteristic of picking up sequences from a particular organism, such as block 1 on the chick globins that fall between the two green lines. The most specific motif generated from Block 2 picks up most of the beta chains.

The second training set containing serine proteases basically are processed in the same way. First, a neighbor-joining tree is generated (Fig 3). Looking at the tree, the
clusters seem to form according to the function assigned to the sequences. All the venom proteinases group to one side of the tree very early on and are the outgroup to all other members. Most of the trypsins pair up according to organisms' taxonomy and the type of trypsin. Another group is the mast cell proteases and they all cluster together under one main node. No other mast cell proteases are found among other clusters. Overall, the tree looks very reasonable.

The result of the motif scan done using block 1 shows that the most specific motif defines trypsin better than either venom proteinases or mast cell proteases (sequences with blue lines or brackets in Fig 3). A couple of trypsins that have longer branch length, such as fish (gadmo) and hawkmoth (manse) are not picked up until after $24^{\text {th }}$ motif. This makes sense that if the sequences have diverged much through time, it would be less similar in their alignment. Motifs of $12^{\text {th }}$ and $16^{\text {th }}$ specificity return several groups of venom proteinases and several trypsinP. According to the tree, venom proteinases and trypsinP are quite distant taxa. The sources of these trypsin range from vertebrate, insects, fungus, to bacteria. Due to this variability, the context in which trypsinP works is not clear. The fact that the motif of this particular specificity picks up both typsinP and venome proteinases could be explained by convergent evolution in this block.

Motif of $20^{\text {th }}$ specificity defines very well the node under which all the mast cell proteases fall since all of the mast cell proteases are returned with this motif (red bracket in Fig 3).

As for block 2, the most specific motif returns many venom proteinases along with most of the trypsin in the cluster closest to the venom taxa (blue lines and brackets in Fig 4). This block probably is the main reason why this group of trypsins is close in
mutational distance to the venom taxa. The purple brackets in Fig 4 denotes the group that is returned with a motif of specificity $30^{\text {th }}$. This group composes of mosquito trypsins (anoga) and mammalian trypsins secreted by mast cells. It is interesting to speculate that to digest blood proteins, the mosquito trypsins have evolved similarly to mammalian trypsins in a particular segment as both are functioning in the context of blood/lymph. Motif of specificity $36^{\text {th }}$ recovers only a small group of mast cell proteases. This block may not define the characteristics of mast cell proteases very well.

DISCUSSION

At the first glance of figures 1-4, one can see that several nodes correspond quite well to a motif of a particular specificity. As the motif become less sensitive, more sequences are returned as hits. There would be time when the motif is not sensitive enough for this purpose and positive hits are returned with no particular cluster relationship to the nodes of the tree.

If one sees a colored marking that denotes a isolated sequence as a positive hit while no other neighbor sequence in its cluster are returned as a positive hit, it is very likely that the colored marking correspond to a motif of low specificity and high coverage. In this case, the number of false positives increases and this isolated sequence may simply match due to its consensus sequence and does not provide information for the goal of this experiment.

Various blocks generated from different segment of the sequences also have different effects on how well the motif scan results correspond to the nodes of a tree. For example, block 1 and block 2 from both training sets have produced different hits when a motif scan is done. If a particular segment used to generate the block can reflect the
mutation distance of a member to other members of the set, then the motif scan from that block would produce collaborating results. It is interesting to see that a specific motif generated from different block can pick up different combination of groups. For the Trypsin_SER trees, the first block generates a specific motif that picks up typsins \& its variants, while the $2^{\text {nd }}$ block returns the venom taxa along with one subtype of trypsin.

Despite the variations from block segments and isolated branches in a tree, this experiment demonstrates that motif sensitivity seems to correspond well to the nodes of the neighbor-joining trees overall. There are several things that can be improved so that the result can be more definitive than what is presented here. The members of the training set have not been chosen with as much care as they deserve. There are several sequences that are never returned as hits even if the motif specificity is very low.

For example, in the globin training set, beta-1 chains of Indian Cobra (Najna) and Electric Ray (Torma) are not picked up by any of the 7 sample motifs used although they are close neighbors to other beta chains that are picked up pretty early on. After doing some additional searches, it seems that electric ray beta- 1 chain is pretty distant from all other beta- 1 chains compare to other beta- 1 chains. There is another fish beta- 1 chain that is closely related to electric ray beta-1 chain named hbb1_Dasak, whose crystal structure has been solved. Hbb1_Torma is probably classified as hbb1 since it is related to hbb1_Dasak, whose structure confirms its identity as hbb1. Hbb1_Dasak seems to be able to group with other hbb1 better than hbb1_Torma. In this case, it would be helpful to compare the sequences of hbb1_Torma to hbb1_Dasak and other hbb1 to figure out why hbb1_Torma is dissimilar to other hbb1.

Comparing the globins training set and the Trypsin_SER training set reveals another weakness in this experiment. The motifs generated from the globins alignment have much less number of expected false positives than Trypsin_Ser (Tables 1-4). Although the function of trypsin is to cleave protein, the context of function has diverged much and to generate a motif that attempts to have a decent coverage, specificity is compromised. One way to improve this paralogous training set is to compile members that would generate blocks that are as specific as the ones in the globin training set.

In conclusion, this proof-of-concept experiment shows that the output of treebuilding algorithm can be matched with motifs with various specificities. Looking at the tables, the percentages of matching are generally 80% or better. If there is a more quantitative method to represent this observation, the result can be analyzed with statistics. Nevertheless, the results of this experiment are in agreement and correlate with the principles behind both tree-building method and motif maker despite its shortcomings.

Fig. 1. Neighbor-Joining Phylogenetic Tree of Globins, Marked according to motif scans generated from Block 1

Fig. 2 Neighbor-Joining Phylogenetic Tree of Globins, Marked according to motif scans generated from Block 2

Table 1. Summarization of Tree and eMOTIF maker correlation : Globins Block 1

Motif Specificity* \# of expected FP)	Number of hits	Number of sequences in a hypothetical set	$\%$ of hits / sequences in the set
$1\left(10^{-26}\right)$	24	31	77
$2\left(10^{-25}\right)$	27	31	87
$6\left(10^{-24}\right)$	33	37	89
$9\left(10^{-23}\right)$	36	41	88
$16\left(10^{-19}\right)$	42	42	100
$30\left(10^{-12}\right)$	57	58	98
$51\left(10^{-3}\right)$	78	82	95

*with 1 being the most specific

Table 2. Summarization of Tree and eMOTIF maker correlation : Globins Block 2

Motif Specificity* \# of expected FP)	Number of hits	Number of sequences in a hypothetical set	$\%$ of hits / sequences in the set
$1\left(10^{-31}\right)$	27	32	84
$2\left(10^{-31}\right)$	31	32	97
$6\left(10^{-29}\right)$	35	37	95
$10\left(10^{-26}\right)$	38	40	95
$20\left(10^{-19}\right)$	53	58	91
$40\left(10^{-13}\right)$	70	72	97
$58\left(10^{-6}\right)$	86	91	95

* with 1 being the most specific

Fig 3. Neighbor-Joining Phylogenetic Tree of Trypsin_SER, Marked according to motif scans generated from Block 1

Fig 4. Neighbor-Joining Phylogenetic Tree of Trypsin_SER, Marked according to motif scans generated from Block 2

Table 3. Summarization of Tree and eMOTIF maker correlation: Trypsins_SER Block 1

Motif Specificity* (\# of expected FP)	Number of hits	Number of sequences in a hypothetical set	$\%$ of hits / sequences in the set
$1\left(10^{-4}\right)$	30	42	71
$2\left(10^{-4}\right)$	39	53	74
$8\left(10^{-3}\right)$	42	53	79
$12\left(10^{-1}\right)$	49	60	82
$16\left(10^{0}\right)$	57	68	84
$20\left(10^{0}\right)$	69	82	84
$24\left(10^{2}\right)$	79	86	88
$27\left(10^{3}\right)$	93	100	93

*with 1 being the most specific
Table 4. Summarization of Tree and eMOTIF maker correlation: Trypsins_SER Block 2

Motif Specificity* \# of expected FP)	Number of hits	Number of sequences in a hypothetical set	$\%$ of hits / sequences in the set
$1\left(10^{-16}\right)$	33	48	69
$6\left(10^{-13}\right)$	42	48	88
$9\left(10^{-12}\right)$	43	48	90
$16\left(10^{-7}\right)$	52	57	91
$25\left(10^{-4}\right)$	61	62	98
$30\left(10^{-1}\right)$	73	76	96
$36\left(10^{0}\right)$	83	91	91

$43\left(10^{1}\right)$	85	91	93

*with 1 being the most specific

REFERENCES

1. Thompson, Higgins \& Gibson, Nucleic Acids Res 1994 Nov 11;22(22):4673-80.
2. Nevill-Manning, Wu \& Brutlag, Proc. Natl. Acad. Sci. 1998 May 95:5865-5817.
3. Saitou \& Nei, Mol. Biol. Evol. 4(4):406-425.
4. Kuhner \& Felsenstein, Mol. Biol. Evol. 1994, 11(3):459-468.
5. Henikoff, Henikoff, Alford, and Pietrokovski (1995), Gene 163:GC17-26.
6. http://us.expasy.org/cgi-bin/get-prosite-entry?PS01033
7. http://www.expasy.ch/cgi-bin/prosite-search-de?search=PS00135

Appendix

Table 1.

Entry Name: GLOBIN
 Accession number: PS01033

A	(P23017), HBB1_IGUIG	(P18987) , HBB1_MOUSE	(P02088),
HBB1_ONCMY	(P02142), HBB1_PAGBO	(093348), HBB1_RAT	(P02091),
HBB1_SPHPU	(P10060), HBB1_TAPTE	(P02064), HBB1_TORMA	(P20246),
HBB1_TRICR	(P10785) , HBB1_UROHA	(P18991), HBB1_VAREX	(P18993),
HBB1_XENBO	(P07432), HBB1_XENLA	(P02132), HBB1_XENTR	(P07429),
HBB2_CYGMA	(P23018), HBB2_MOUSE	(P02089), HBB2_NAJNA	(P22743),
HBB2_PANLE	(P18988) , HBB2_RAT	(P11517) , HBB2_SPHPU	(P10061) ,
HBB2_TAPTE	(P02065), HBB2_TORMA	(P20247), HBB2_TRENE	(093349),
HBB2_TRICR	(P10786), HBB2_XENBO	(P07433), HBB2_XENLA	(P02133),
HBB2_XENTR	(P08423), HBB3_RANCA	(P02136), HBB4_ONCMY	(P02141),
HBA_MACMU	(P01925) , HBA_DIDMA	(P01976), HBA_AILFU	(P18969),
HBA_AILME	(P18970), HBA_ALCAA	(P01971), HBA_ALLMI	(P01999),
HBA_BOSGF	(P01969), HBA_BOVIN	(P01966), HBA_BRACA	(P01991),
HBA_BRATR	(P14525), HBA_CAICR	(P02000), HBA_CAIMO	(P01987) ,
HBA_CHEKU	(P80270), HBA_CHICK	(P01994), HBA_CHLME	(P07034) ,
HBA_HIPAM	(P19015), HBA_HORSE	(P01958), HBA_HUMAN	(P01922),
HBA_PTEPO	(P14390), HBA_RABIT	(P01948), HBA_RANTA	(P21379),
HBA_PIG	(P01965), HBA_PROLO	(P18977), HBA_CAVPO	(P01947) ,
HBB_MACMU	(P02026), HBB_DIDMA	(P02109), HBB_AILFU	(P18982) ,
HBB_AILME	(P18983), HBB_ALCAA	(P02073), HBB_ALLMI	(P02130),
HBB_BOSGF	(P02071), HBB_BOVIN	(P02070), HBB_BRACA	(P02119),
HBB_BRATR	(P14526), HBB_CAICR	(P02131), HBB_CAIMO	(P14260),
HBB_CHEKU	($\overline{\text { P80271 }})$, HBB_CHICK	(P02112), HBB_CHLME	(P07036),
HBB_HIPAM	(P19016), HBB_HORSE	(P02062), HBB_HUMAN	(P02023),
HBB_PTEPO	(P14392), HBB_RABIT	(P02057), HBB_RANTA	(P21380) ,
HBB_PIG	(P02067), HBB_PROLO	(P18989), HBB_CAVPO	(P02095) ,
HBE_PIG	(P02101), HBE_CHICK	(P02128), HBE_HUMAN	(P02100),
HBE_RABIT	(P02103), HBE_MACMU	(Q28507) , HBE_DIDMA	(P11025),
MYG_CHICK	(P02197), MYG_CYPCA	(P02204), MYG_DIDMA	(P02193),
MYG_MOUSE	(P04247), MYG_BOVIN	(P02192), MYG_HORSE	(P02188),
MYG_HUMAN	(P02144), MYG_RABIT	(P02170), MYG_SHEEP	(P02190),
HBBC_PAGBE	(P45722), HBBC_SHEEP	(P02079), HBBC_TRENE	(P45721),
HBBF_BOVIN	(P02081), HBBF_CAPHI	(P02082), HBBF_SHEEP	(P02083)
HBBL_XENLA	(P02137)		

Table 2.

Entry Name: TRYPSIN_SER
Accession number: PS00135

Table 3. Globins Blocks from Block Maker

gi	1170175	24	GPATLARCLVVYPWTQRYFGKFGNLYNATAIAENAMV
gi	1170176	24	GPATLARCLVVYPWTQRYFGKFGNLYNAAAIAQNAMV
gi	122341	25	GGEALERTFASFPTTKTYFPHFDLSPGSAQVKAHGKK
gi	122342	25	GGEALERTFASFPTTKTYFPHFDLSPGSAQVKAHGKK
gi	122343	25	GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKAHGEK
gi	122344	25	GAEALERMFCAYPQTKIYFPHFDMSHNSAQIRAHGKK
gi	122360	25	GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGAK
gi	122362	25	GAETLERMFVAYPQTKTYFPHFDLQHGSAQIKAHGKK
gi	122363	25	GGEALERTFLSFPTTKTYFPHFDLSPGSAQVKAHGKK
gi	122364	25	GAEALERMFCAYPQTKIYFPHFDMSHNSAQIRGHGKK
gi	122365	26	GAETLERMFIAYPQTKTYFPHFDLQHGSAQIKAHGKK
gi	122372	25	VAEGLTRMFTSFPTTKTYFHHIDVSPGSGDIKAHGKK
gi	122378	26	GAETLERMFTTYPPTKTYFPHFDLSHGSAQIKGHGKK
gi	122379	25	GAETLERMFIAYPQTKTYFPHFDLHHGSAQIKAHGKK
gi	122395	25	MGEALYRTFLSFPTTKTYFPNYDFSAGSAQIKTQGQK
gi	122410	25	GAEALERMFLSFPTTKTYFPHFDLSHGSSQVKAHGKK
gi	122411	26	GAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHGKK
gi	122412	26	GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKK

gi|122465
gi| 122470
gi| 122474
gi 122475
gi 122476
gi 122512
gi 122513
gi| 122514
gi 122515
gi 122516
gi 122517
gi 122518
gi 122519
gi 122520
gi 122521
gi 122522
gi 122523
gi 122524
gi| 122525
gi|122526
gi 122527
gi 122528
gi 122529
gi|122530
gi| 122531
gi 122532
gi 122533
gi 122535
gi|122536
gi 122537
gi 122538
gi 122543
gi 122544
gi|122545
gi|122546
gi 122548
gi|122553
gi 122554
gi| 122555
gi|122556
gi 122570
gi 122572
gi 122573
gi 122574
gi|122575
gi 122576
gi 122581
gi 122587
gi 122588
gi|122601
gi|122613
gi| 122614
gi 122615
gi 122634
gi|122671
gi|122675
gi|122676

25 GAEALERMFLGFPTTKTYFPHFNLSHGSDQVKAHGQK 25 GGEALERTFASFPTTKTYFPHFDLSPGSAQVKAHGKK 25 GAEALERMFLSFPTTKTYFPHFDLAHGSSQVKAHGKK 26 GAEAVERMFLGFPTTKTYFPHFDFTHGSEQIKAHGKK 25 GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKAHGEK 24 GGETLACLLVVYPWTQRFFPDFGNLSNAAAICGNAKV 25 GGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNAKV 25 GGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNPKV 24 GPLALARVLIVYPWTQRYFGSFGNVSTPAAIMGNPKV 24 GGEALGRLLVVYPWTQRFFADFGNLSSATAICGNPRV 24 GGEALGRLLVVYPWTQRFFDSFGDLSTAAAVMGNPKV 24 TAKALERVFYVYPWTTRLFTSFNHNFKASDKQVHDHA 23 GAEALGRLILVNPWTRRYFKSFGDLSSAEAIQHNPKV 24 GGETLANLLVVYPWTQRFFEDFGNLSTPSAILNNPKX 24 GGETLAGLLVIYPWTQRQFSHFGNLSSPTAIAGNPRV 24 GKEALGRLLWTYPWTQRYFSSFGNLNSADAVFHNEAV 24 GQEALGRLLWTYPWTQRYFSSFGNLNSADAVFHNEAV 25 GKQALGSMLYTYPWTQRYFSSFGNLSSIEAIFHNAAV 24 GPATLARCLVVYPWTQRYFGKFGNLYNAAAIAENAMV 25 GGEALGRLLVVYPWTQRYFDSFGDLSSASAIMGNPKV 24 GAATLGKMMVMYPWTQRFFAHFGNLSGPSALCGNPQV 24 GGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 25 GAEALGRLLVVYPWTQRYFSKFGDLSSASAIMGNPQV 24 GGEALGRLLIVYPWTQRFFSSFGNLSSSTAICGNPRV 24 GGEALGRLLVVYPWTQRFFDSFGDLSTAAAVMGNPKV 24 TAKALERVFYVYPWTTRLFTSFNHNFKASDKGVHDHA 24 GGQCLARLIVVNPWSRRYFHDFGDLSSCDAICRNPKV 24 GKEALGRLLNTFPWTQRYFSSFGNLGSAEAIFHNEAV 25 GHDALGRLLIVYPWTQRYFSNFGNLSNSAAVAGNAKV 25 GHDALSRLLVVYPWTQRYFSSFGNLSNVSAVSGNVKV 24 GPQALARLLIVSPWTQRHFSTFGNLSTPAAIMGNPAV 20 GAEALGRLLVVYPWTQRFFEHFGDLSTADAVLGNAKV 23 GGEALGRLLVVYPWTQRFFESFGDLSSADAILGNPKV 23 GGEALGRLLVVYPWTQRFFEHFGDLSSADAILGNPKV 23 GGEALGRLLVVYPWTQRFFEHFGDLSSADAILGNPKV 25 GHDALTRLLVVFPWTQRYFSSFGNLSNVAAISGNAKV 24 GGEALGRLLVVYPWTQRFFDSFGDLSSPDAVMGNPKV 24 GGEALGRLLVVYPWTQRFFDSFGDLSTPDAVMNNPKV 23 GGEALGRLLVVYPWTQRFFEHFGDLSTADAVMHNAKV 24 GADALSRMLIVYPWKRRYFEHFGKMCNAHDILHNSKV 23 GGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKV 23 GGEALGRLLVVYPWTQRFFESFGDLSTADAVMNNPKV 24 GAEALARLLIVYPWTQRFFSSFGNLSSPTAILGNPMV 24 GGEALGRLLVVYPWTSRFFESFGDLSSADAVFSNAKV 24 GGDALSRMLIIYPWKRRYFEHFGKLSTDQDVLHNEKI 25 GAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV 24 GAEALGRLLVVYPWTQRFFEKFGDLSSASAIMSNAHV 25 GAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV 24 GAEALARLLIVYPWTQRFFASFGNLSSPTAISGNPMV 25 GGEALGRMLVVYPWTTRFFGSFGDLSSPGAVMSNSKV 24 GGEALGRLLVVYPWTQRFFESFGDLSSADAVMNNPKV 24 GGEALGRLLVVYPWTQRFFDSFGDLSNPGAVMGNPKV 25 GGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 24 GGEALGRLLLVYPWTQRFFESFGDLSSPDAVMGNPKV 24 GGEALGRLLVVYPWTQRFFESFGDLSSADAIMGNPKV 24 GGEALGRLLVVYPWTQRFFDSFGDLSSAPAVMGNPKV 25 GGEALGRLLVVYPWTQRFFESFGDLSSANAVMNNPKV

gi\|122678	23 GAEALGRLLVVYPWTQRFFEHFGDLSSADAIMHNDKV
gi\|122723	25 GAEALARLLIVYPWTQRFFASFGNLSSPTAIMGNPRV
gi\|122724	25 GGESLARLLVVYPWTQRFFDSFGNLSSASAVMGNPKV
gi 122726	25 GGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKV
gi\|122731	25 GGEALGRLLVVYPWTQRFFDNFGNLSSSSAIMGNPKV
gi\|127638	26 GQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASEDL
gi\|127647	21 GGEVLTRLFKQHPETQKLFPKFVGIASNELAGNAAVK
gi\|127648	25 GQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL
gi\|127661	26 GQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL
gi\|127676	26 GQEVLIGLFKTHPETLDKFDKFKNLKSEEDMKGSEDL
gi\|127691	25 GQEVLIRLFHTHPETLEKFDKFKHLKSEDEMKASEDL
gi\|127694	25 GQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASEDL
13634094	26 GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGAK
\|14194774	25 GPKALSRCLIVYPWTQRHFSGFGNLYNAESIIGNANV
gi\|14194794	25 GPKALSRCLIVYPWTQRHFSGFGNLYNAEAIIGNANV
gi\|14195588	25 GPKALSRCLIVYPWTQRHFSGFGNLYNAEAIIGNANV
gi\|1708122	25 GHEALTRLFIVYPWTQRYFSTFGDLSSPAAIAGNPKV
gi\|2506462	25 GQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASEDL
gi\|3041678	25 GGEALGRLLVVYPWTQRFFESFGDLSNADAVMGNPKV
gi\|3041679	25 GGQAVGRLLVVYPWTQRFFDSFGNMSSPSAIMGNPKV
gi\|462246	25 GAEALARMLTVYPQTKTYFTHWTDLSPSSTSVKNHGK
gi\|462247	24 GPATLTRTVIVYPWTLRYFAKFGNICSTAAILGNKEI
gi\|462677	25 GHEVLMRLFHDHPETLDRFDKFKGLKTPDQMKGSEDL
gi\|6016192	25 GGEALGRLLVVYPWTQRFFDSFGNLSSPSAILGNPKV
gi\|6166198	26 GAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

unknownB, width $=44$

	122519	
	122520	13)
	122521	(13)
	122522	13)
	122523	13
	122524	(13)
	122525	(13)
	122526	13
	122527	$13)$
	122528	
	122529	(13)
	122530	13
	122531	13)
	122532	(9)
	122533	
	122535	(13)
	122536	13)
	122537	(13)
	122538	(13)
	122543	
	122544	(13)
	122545	13)
	122546	(13)
	122548	(13)
	122553	
	122554	13
	122555	13)
	122556	(13)
	122570	
	122572	
	122573	13
	12257	13)
	122575	13)
	122576	13
	122581	13
	12258	13)
	122588	13)
	122601	13)
	122613	$13)$
	122614	13)
	122615	(13)
	122634	13
	122671	13
	122675	13)
	122676	13)
	122678	13)
	122723	13)
	122724	13)
	122726	13)
	122731	13)
	127638	39)
	127647	12)
	127648	39)
	127661	
	127676	
	127691	39)
	127694	

73 AVKHLDDLKAYYADLSTIHCKKLYVDPANFKLFGGIVSIVTGMH 74 ALKNLDNVXXXXXKLSEYHCNKLHVDPVNFRLLGDVLITLSAAN 74 AIKNLDNIKDTFAKLSELHCDKLHVDPTNFKLLGNVLVIVLADH 74 AIKHMDDIKGYYAQLSKYHSETLHVDPCNFKRFGGCLSISLARQ 74 AIKHMDDIKGYYAQLSKYHSETLHVDPLNFKRFGGCLSIALARH 75 AIKHMDDIKGYYAQLSKYHSETLHVDPYNFKRFCSCTIISMAQT 74 AVKNMDDIKNTYAELSVLHCDKLHVDPDNFQLLAECLTIVLAAQ 75 GLKNLDNLKGTFASLSELHCDKLHVDPENFRLLGNAIVIVLGHH 74 ALKHLDNVKETFAKLSELHFDKLHVDPENFKLLGNVLIIVLAGH 74 GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH 75 GLKHLDNLKGTFAHLSELHCDKLHVDPENFRLLGNMIVIVLGHH 74 AVKNLDNIKATYAKLSELHCEKLHVDPQNFNLLGDIFIIVLAAH 74 GVHHLDDLKVTFAQLSELHCDKLHVDPENFRLLGNVLVVVLAQQ 70 AIGDLHNVNKNFSALSTKHQKKLGVDTSNFMLLGQAFLVELAAF 74 ATKHLDNLREYYADLSVTHSLKFYVDPENFKLFSGIVIVCLALT 74 AIKHMDDIKGYYAELSKYHSETLHVDPNNFKRFGGCLSITLGHH 75 AISHIDSVKSSLQQLSKIHATELFVDPENFKRFGGVLVIVLGAK 75 AIQHLDDVKSHLKGLSKSHAEDLHVDPENFKRLADVLVIVLAAK 74 AVQNLDDIKNTYATLSVMHSEKLHVDPDNFRLLADCITVCVAAK 70 GVQHLDDLKGTFAQLSELHCDKLHVDPENFRLLGNVLVVVLARH 73 GLKQLDDLKGAFASLSELHCDKLHVDPENFRLLGNVLVVVLARR 73 GLKQLDDLKGAFASLSELHCDKLHVDPENFRLLGNVLVVVLARR 73 GLKQLDDLKGAFASLSELHCDKLHVDPENFRLLGNVLVVVLARR 75 SIHHLDDIKNFLSVLSTKHAEELHVDPENFKRLADVLVIVLAGK 74 GLKNLDNLKGTFAKLSELHCDKLHVDPENFKLLGNVLVCVLAHH 74 GLKNLDNLKGTFAKLSELHCDKLHVDPENFKLLGNVLVCVLAHH 73 GLKHLDDLKGAFAKLSELHCDKLHVDPENFRLLGNVLVVVLARH 74 AVKHLDNIKGHFANLSKLHCEKFHVDPENFKLLGDIIIIVLAAH 73 GMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARH 73 GMKHLDDLKGTFAALSELHCDKLHVDPENFKLLGNVLVVVLARN 74 AVKNLDNIKNTFAQLSELHCDKLHVDPENFRLLGDILIIVLAAH 74 GLKHLDDLKGTYAHLSELHCDKLHVDPENFKLLGNVLVIVLARH 74 AVKHLDNIKGHFAHLSKLHFEKFHVDCENFKLLGDIIIVVLGMH 75 AVKNLDNIKNTFAQLSELHCDKLHVDPENFRLLGDILIIVLAAH 74 GLKHLQDLKGTFAKLSELHCDKLHVDPENFRLLGNMIVIALAHH 75 AVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAH 74 AVKNLDNIKNTFSQLSELHCDKLHVDPENFRLLGDILIIVLAAH 75 AVKHLDNLKGTYAKLSELHCDKLHVDPENFKMLGNIIVICLAEH 74 GLKHLDNLKGTFAALSELHCDQLHVDPENFRLLGNELVVVLART 74 GVHHLDNLKGTFAALSELHCDKLHVDPENFRLLGNVLVVVLARH 75 GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHH 74 GLNHLDNLKGTFAQLSELHCDKLHVDPENFKLLGNVLVCVLAHH 74 GLKNLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVCVLAHH 74 GLQHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVCVLARH 75 GLSHLDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLVIVLSHH 73 GLKHLDDLKGAFAKLSELHCDKLHVDPENFRLLGNVLVVVLARH 75 AVKNLDNIKNTYAKLSELHCDKLHVDPENFRLLGDILIIVLASH 75 GVKNMDNLKGTFAKLSELHCDKLHVDPENFRLLGNVLIIVLASR 75 AIKNMDNLKPAFAKLSELHCDKLHVDPENFKLLGNVMVIILATH 75 AIKNMDNLKGAFAKLSELHCDKLHVDPENFKLLGNVLLIVLATH 102 VKYLEFISDAIIHVLHAKHPSDFGADAQAAMSKALELFRNDMAA 70 LLKARGDHAAILKPLATTHANTHKIALNNFRLITEVLVKVMAEK 101 VQFLEFISEAIIQVIQSKHPGDFGGDAQAAMGKALELFRNDMAA 102 VKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMAS 102 VKYLEFISEIIIEVLKKRHSGDFGADAQGAMSKALELFRNDIAA 101 VKYLEFISEAIIHVLHSKHPGDFGADAQAAMSKALELFRNDIAA 101 VKYLEFISDAIIHVLHAKHPSNFGADAQGAMSKALELFRNDMAA

	4		70
	14194774	13)	75 GLKNMDNIEATYADLSTLHSEKLHVDPDNFKLLADCITIVLAAK
gi	14194794	13)	75 GMKNMDNIADAYTDLSTLHSEKLHVDPDNFKLLSDCITIVLAAK
gi	14195588	13)	75 GLKNMDNIVDAYAELSTLHSEKLHVDPDNFKLLSDCITIVLAAK
gi	1708122	13)	75 AIHNLDDVKGTLHDLSEEHANELHVDPENFRRLGEVLIVVLGAK
gi	2506462	39)	101 IKYLEFISDAIIHVLHSKHPGDFGADAQGAMTKALELFRNDIAA
gi	3041678	13)	75 GLKHLDNLKGTFAKLSELHCDQLHVDPENFRLLGNVIVVVLARR
gi	3041679	13)	75 AVKNMDNLKGTFAKLSELHCDKLHVDPENFRLLGNMIVIILASH
	462246	8)	70 AVSKMDDLTAGLLELSEKHAFQLRVDPANFKLLSHCLLVVISIM
gi	462247	13)	74 GVKNMDDIKNTYAELSKLHSEKLHVDPDNFRLLSDCLTIVVAAK
gi	462677	39)	101 VKYLEFISEVIIKVIAEKHAADFGADSQAAMKKALELFRNDMAS
gi	6016192	13)	75 AIKNMDNLKITFAKLSELHCDKLHVDPENFKLLGNVMVIILATH
gi	6166198	7)	70 AVGHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAH

Table 4. Trypsin_SER Blocks from Block Maker

BLOCK 1

VIGGDECDINEHPFLAFM IVGGSATTISSFPWQISL IVGGSATTISSFPWQISL IVGGEDTTIGGDPYQVSL IVGGADTSSYYTKYVVQL IIGGTESKP HSRPYMAHL IIGGTECKPHSRPYMAYL IIGGVEARPHSRPYMAHL VVGGDECNINEHPFLVAL VVGGDECNINEHPFLVAL IVGGFEIDVSETPYQVSL IVGGYTCSRNSVPYQVSL IVGGYNCEENSVPYQVSL IVGGYTCPEHSVPYQVSL IVGGYTCEENSVPYQVSL IVGGYICEENSVPYQVSL IVGGYTCQKNSLPYQVSL IVGGYTCPKHLVPYQVSL IVGGTDAVLGEFPYQLSF IVGGSATTISSFPWQISL IVGGYTCRESSVPYQVSL IVGGYTCAANSIPYQVSL IVGGEDANVQDHPFTVAL IVGGYECPKHAAPWTVSL IIGGATCAKSSVPYIVSL IVGGREAPGSKWPWQVSL VVGGDECNINEHRSLVAI VIGGHPCNINEHPFLVLV VIGGDECNINEHRSLVVL IIGGRPCDINEHRSLALV VIGGDECNINEHRFLALV VIGGDECNINEHRFLVAL VIGGDECNINEHPFLVLV VIGGDECNINEHPFLVLV VIGGDECNINEHPFLVLV VIGGDECNINEHPFLVLV IIGGDECNINEHPFLVLV VIGGNECDINEHRFLVAF VVGGDECDINEHPFLVAL

IIGGDECNINEHRFLVAL VIGGDECNINEHRFLVAL VIGGDECDINEHPFLAFM IIGGVESKPHSRPYMAHL IIGGTECKPHSRPYMAYL IIGGTECKPHSRPYMAYL IIGGVEAKPHSRPYMAYL IVGGSATTISSFPWQISL IVGGTATTISSFPWQISL IVGGTATTISSFPWQISL IVGGYETSIDAHPYQVSL IIGGSDQLIRNAPWQVSI IVNGVDTTIEAHPYQVPL IVGGEDTTIRAHPYQVSL IVGGQEAPGNKWPWQVSL IVGGADTTNYHTKYVVQL IVGGYVTDIAQVPYQITL IVGGQEAPRSKWPWQVSL IVGGKEAPGHKWPWQVSL IIGGKEAPGSRWPWQVSL IVGGQEAPRSKWPWQVSL IVGGYTCAENSVPYQVSL IVGGYSCARSAAPYQVSL IVGGYSCARSAAPYQVSL IVGGYTCPEHSVPYQVSL IVGGFTCAKNAVPYQVSL VIGGKPAAQNEFPFMVHL IVGGYECTRHSQAHQVSL IVGGYTCGANTVPYQVSL IVGGYECTKHSQAHQVSL IVGGFQIDIAEVP HQVSL IVGGFEVPVEEVPFQVSL IIGGVESRPHSRPYMAHL IVGGYTCQENSVPYQVSL IIGGTECKPHSRPYMAYL IIGGDECNINEHRFLVAL IIGGHEAKPHSRPYMAFL IVGGFEIDVSDAPYQVSL IVGGYECKAYSQTHQVSL VVGGFQIDVSDAPYQVSL IVGGYECKAYSQPHQVSL IVGGYECRKNSASYQASL IVGGFEIDVAETPYQVSL IVGGVATTISSFPWQISL IVGGFEINVSDTPYQVSL IVGGSTTTIQQYPTIVAL IVGGTATTISSFPWQISL IVGGSTTTIQQYPTIVAL IVGGSTTTIQQYPTIVAL IVGGYETSIDAHPYQVSL IVGGSVTTIEQWPSGSAL IVGGTSASAGDFPFIVSI IIGGHECAAHSRPFMASL IVGGEMTDISLIPYQVSV VVGGTRAAQGEFPFMVRL

BLOCK2

DKDIMLIRLDRPVKNSEHIAPLSLP SNPPSVGSVCRIMGWGAI VNDIVIIKINGALTFSSTIKAIGLASSNPANGAAGSVSGWGTL VNDIVIIKINGALTFSSTIKAIGLASSNPANGAAGSVSGWGTL EYDVGILKLDEKVKETENIRYIELATETPPTGTTAVVTGWGSK DIALVVVDPPLPLDSFSTMEAIVIASEQPPVGVQATISGWGYT NDIAILFVDPPLALNNFTIKGIKLASEQPIEGTVSKVSGWGTT DIMLLKLKEKANLTLAVGTLPLSPQFNFVPPGRMCRVAGWGKR DIMLLKLKEKASLTLAVGTLPFPSQFNFVPPGRMCRVAGWGRT DIMLLKLEEKAELTPTVDVIPLPGPSDFIDPGKMCWTAGWGKT DKDIMLIRLRRPVTYSTHIAPVSLPSRSRGVGSRCRIMGWGKI DKDIMLIRLRRPVTYSTHIAPVSLPSRSRGVGSRCRIMGWGKI DFSLMELETELTFSDVVQPVSLPEQDEAVEDGTMTTVSGWGNT DNDIMLIKLSSPATLNSRVSAIALPKSCPAAGTQCLISGWGNT NNDIMLIKLSSRAVINARVSTISLPTAPPATGTKCLISGWGNT NNDIMLIKLSSPVKLNARVAPVALPSACAPAGTQCLISGWGNT DNDIMLIKLSSPAVLNARVATISLPRACAAPGTQCLISGWGNT DNDILLIKLSSPAVINSRVSAISLPTAPPAAGTESLISGWGNT DNDIMLIKLNSPATLNSRVSTVSLPRSCGSSGTKCLVSGWGNT DNDIMLIKLKSPAVLNSQVSTVSLPRSCASTDAQCLVSGWGNT DNDISLLKLSGSLTFNNNVAPIALPAQGHTATGNVIVTGWGTT VNDIAVIRLSSSLSFSSSIKAISLATYNPANGASAAVSGWGTQ DNDIMLIKLASPVTLNARVASVPLPSSCAPAGTQCLISGWGNT DNDIMLIKLSSPATLNSRVATVSLPRSCAAAGTECLISGWGNT KGFDVSVLTLEAPVKEAPIELAKADDAGYAPDTAATILGWGNT DNDIMLIKLSKPAALNRNVDLISLPTGCAYAGEMCLISGWGNT DNDIMLIKLSSPASLNAAVNTVPLPSGCSAAGTSCLISGWGNT DIALLELEDPVNVSAHVQPVTLPPALQTFPTGTPCWVTGWGDV DKDIMLIKLDSSVSNSEHIAPLSLPSSPPSVGSVCRIMGWGSI GKDIMLIRLNRSVNNSTHIAPLSLPSSPPSQNTVCNIMGWGTI DKDIMLIRLNRSVNNSVHIAPLSLPSSPPRLGSVCRVMGWGAI DKDIMLIRLDSPVKNSAHIAPISLPSSPPIVGSVCRIMGWGTI DKDIMLIRLDSPVNNSAHIAPLNLPFNPPMLGSVCRIMGWGAI DKDIMLIRLDSPVSNSEHIAPLSLPSSPPSVGSVCRIMGWGRI NKDIMLIRLDRPVRKSAHIAPLSLP SSPPSVGSVCRVMGWGTI NKDIMLIRLDRPVRKSAHIAPLSLP SSPPSVGSVCRVMGWGTI NKDIMLIRLDRPVRKSAHIAPLSLPSSPPSVGSVCRVMGWGTI NKDIMLIRLDRPVRKSAHIAPLSLPSSPPSVGSVCRVMGWGTI NKDIMLIRLNRPVRKSAHIAPLSLPSSPPSVGSVCRIMGWGTI DKDIMLIKLDKPISNSKHIAPLSLPSSPPSVGSVCRIMGWGSI DKDIMLIRLRRPVKNSAHIAPISLPSSPSSPRSRCRIMGWGKI DKDIMLIRLDSPVKNSAHIAPLSLPSSPPSVGSVCRTMGWGRI DKDIMLIRLDSPVKNSAHIAPLSLPSSPPSVGSDCRTMGWGRI DKDIMLIRLNRPVKNSTHIAPISLPSNPPSVGSVCRIMGWGAI DIMLLKLQKKAKVTASVDVISLPSPSDFINPGKVCRAAGWGRT DIMLLKLKEKASLTLAVGTLPFPSQFNFVPPGRMCRVAGWGRT DIMLLKLKEKAKLTLAVGTLPLPAKFSFIPPGRVCRAVGWGKT DIMLLKLQKKAELNSDVDVISLPSSSDFIKPGKMCWTAGWGKT VNDIAVIRLSSSLSFSSSIKAIALATYNPANGAAAAVSGWGTQ VNDIAVIRLSSSLGFSSTIKSISLASSNPANGAAASVSGWGTQ VNDIAVIRLSSSLSFSSTIKSISLASSNPPNGAAASVSGWGTQ VNDIAIVRIESDLSFRSSIRAVRIADHNPREGATAVVSGWGTT HYDIAVLRLSTPLTFGLSTRAINLASTSPSGGTTVTVTGWGHT VNDVALIKLATPVRESSKIRYIRLADRTPPTGTPAVVTGWGTK ENDVGILKLAEKVKETDDIRYIELATETPPTGTTAVVTGWGSK DIALLELKNPVNISSHVHPVSLPPASETFPSGTLCWVTGWGNI

DIALVIVDPPLPLASSSTMEAIEIAAEQPAVGVQATISGWGYT NDIAVLFVDPPLP LNNFTIKAIKLATEPPLDGAP SKISGWGST DIALLELEEPVNISSHIHTVTLPPASETFPPGMPCWVTGWGDV DIALLELEDPVNLSSHVQPVTLPPASETFPKGTRCWVTGWGDV DIALLQLEEPVSISRHVQPVTLPPASETFPPESQCWVTGWGDV DIALLELEEPVNISSRVHTVMLPPASETFPP GMP CWVTGWGDV DNDILLIKLSTPAVINARVSTLLLPSACASAGTECLISGWGNT NNDIMLIKLSKAATLNSYVNTVPLPTSCVTAGTTCLISGWGNT NNDIMLIKLSKAATLNSYVNTVPLPTSCVTAGTTCLISGWGNT NNDIMLIKLASAVEYSADIQPIALPSSCAKAGTECLISGWGNT DNDIMLIKLSTTARLSANIQSVPLPSACASAGTNCLISGWGNT YDGVGKDWALIKLAKP IDRPTLKIATTAKYNRGTFTIAGWGDV DNDIMLIKLTEPATLNQYVHAVALPTECAADATMCTVSGWGNT NNDIMLIKLKSAASLNSRVASISLPTSCASAGTQCLISGWGNT NNDIMLIKLTKPATLNQYVHAVALPTECAADATMCTVSGWGNT DFSLLELDESIGFSRSIEAIALPDASETVADGAMCTVSGWGDT DFALLELEETVTFSDSCAPVKLPQKDTPVNEGTCLQVSGWGNT DIMLLKLQKKAKVTPAVDVIP LPQP SDFLKP GKMCRAAGWGQT NNDIMLIKLSSPVKLNARVATVALP SSCAPAGTQCLISGWGNT DIMLLKLKEKASLTLAVGTLPFP SQFNFVPP GRMCRVAGWGRT DKDIMLIRLDSPVKNSTHIEPFSLPSSPPSVGSVCRIMGWGRI DIMLLQLTRKAEMSDAVSP INLPRSLEKVKP GMMCSVAGWGQL DYSLLELEDELTFSDSVQPVGLPKQDETVKDGTMTTVSGWGNT DNDIMLIKLSKPATLNTYVQPVALPTSCAPAGTMCTVSGWGNT DFSLMELETELTFSDLVQPVELPEHEEPVEPGTMATVSGWGNT DNDIMLIKLSKPATLNTYVQPVALPTSCAPAGTMCTVSGWGNT DNDIMLIKLSKPASLNSYVSTVALP SSCASSGTRCLVSGWGNL DYSLLELESVLTFSNKVQP ITLPEQDEAVEDGIMTIVSGWGST VNDIAVIRLSSSLTMSSTIKAIALTTAAPANGAAATVSGWGTT DYALLELESELTFSDVVQPVALPEQDEAVDAGTMTIVSGWGST DIAIMRTTSNIAFNNAAQPARIAGANYNLGDNQVVWAAGWGAI TSDIAVLNLSSSLSFSSTIKAIGLASSNTANGAAASVSGWGTE DIAIMRTSSNIAFNNAAQPARIAGANYNVGDNQVVWAAGWGDI DIAIMRTASNIAFNNAAQPARIAGANYNLGDNQVVWAAGWGAI VNDIAIIRIESDLSFRSSIREIRIADSNPREGATAVVSGWGTT DIAILRSATTIAQNNQARPASIAGANYNLADNQAVWAIGWGAT DLAILKLSTSIPSGGNIGYARLAASGSDPVAGSSATVAGWGAT DLTSCSSSSTILWKVTHAVAP IPLPTSCPVAGTPCSVSGWGNT DVALLELAEP IVMNYKTAAIELAEVGEEVETDAMAIVSGWGDT YNGTGKDWALIKLAQP INQP TLKIATTTAYNQGTFTVAGWGAN

Fig. 1 Motif Enumeration: Block 1 of Globins Identified 2358117 motifs
Score ranges from 765 to 3844 .
Number of expected false positives 10^{-32} to 10^{5}

Fig 2. Motif Enumeration: Block 2 from Globins
Identified 115096 motifs
Score ranges from 3301 to 1295.
Number of expected false positives 10^{-26} to 10^{4}

Fig 3. Motif Enumeration: Block 1 of Trypsin_SER
Identified 2764 motifs
Score Ranges from 1183 to 1098
Number of False Positives ranges from 10^{-5} to 10^{3}

Fig 4. Motif Enumeration: Block 2 of Trypsin_SER Identified motifs
Score Ranges from 1339 to 2144
Number of False Positives ranges from 10^{-16} to 10^{3}

MOTIFS Sampled for Globin Block 1 (with 1 being the most specific)

1. g.ealgrll[ilv]vypwtqr[fy]f..fg[dn]ls...a[iv]..n.[kqr]v
2. g.[de]algrll[ilv]vypwtqr[fy]f..fg[dn]ls...a[iv]..n.[kqr]v
3. g.eal.rl[fly][ilv]vypwtqr[fy]f..fg[dn]ls[st]..a[iv]..n.. v
4. g.[de]al.rl[fly][iv]vypwtqr[fy]f..fg[dn]ls...a[iv]..n..v
5.

g..[as][ilv].r[ilmv][fly][ilv]v[fy]pwt.r[fy]f..fg[dn][ilmv]s...a[iv]. .n. .v
30.
g..[ast][ilv]...[filmv]..[fy]pwt.r.f..fg[dn][ilmv]....[as][ilv]..n..[iv]
51. g..[ast][ilv]...[filmv]..[fy]p.t...f..f..........[iv].......

MOTIFS Sampled for Globin Block 2

1. . [ilmv]..[ilmv]d[dn][ilv]k.[ast][fy][as].lselhcdklhvdpenf[kr]llg[d n] [ilmv][ilmv][ilv].[iv]l[as]..
2. . [ilmv]..[ilmv]d[dn][ilv]k.[ast][fy][as].lselhcd[kqr]lhvdpenf[kr]l lg[dn][ilmv][ilmv][ilv].[iv]l[as]..
3.

. [ilmv]..[ilmv]d[dn][ilv]k.[ast][fy][as].lselhcd[kqr]lhvdpenf[kr]llg[dn].[ilmv][ilv].[iv]l...
10.
[ilmv]..[ilmv]d.[ilv]k.[ast][fy][as].lselhcd[kqr]lhvdp.nf[kr][ilmv]lg [dn].[ilmv][ilv]..l...
20.
. [ilmv]..[ilmv]d[dn][ilmv]..[ast][fly][as].ls[de]lh..[kqr]l.vdp.nf[kr]ll...[ilmv][ilv]..la..
40.
....[ilmv]d[dn][ilmv]..[ast][fly]..ls.[ilmv]h...l.vdp.nf[kqr][filmv]l ...[filmv]...[filmv]...
58.
....[ilmv]..[ilmv]...[fly]..ls..h...[fly].vd..nf..[fly]...[filmv]...[filmv]...

MOTIFS Sampled for Trypsin_SER Block 1

1. ivgg.........p[fwy]qvsl
2. ivgg..........p[fwy]q[iv]sl
3. [iv][iv]gg..........p[fwy]q[ilv][st][filmv]
4. [iv][iv]gg.........p[fwy].[iv][as][ilv]
5. [iv][iv]gg.........p[fwy].[ilv].[film
6. [iv][iv]gg..........p[fwy]...[ilmv]
7. [iv][iv]gg.................filmv]
8. [iv][iv]gg................... [ilv]

MOTIFS Sampled for Trypsin_SER Block 2

1. [dn]. dimli[kr]l...........[iv]..[filmv].lp[st].....g[st].c.[iv].gwg.
2. [dn].dimli[kr]l...........[iv]..[filmv].lp........[st].c.[iv].gwg..
3. [dn].dimli[kr]l...........[iv]..[filmv].lp........[ast].c....gwg..
4.

..di.[ilv]i[kr][ilv]...........[iv]..[ilv].l..........[ast]...[iv].gwg..
25.
..d[iv].[ilv][ilv][kr][ilv]...........[iv]..[ilv].[ilv]...........................
g..
30. ...[ilv]..[ilv][ekqr].................[ilv]....................[iv].gwg..
36.[filmv]....................filmv]......................iv].gwg..
43.[filmv]....................[filmv].......................[iv].gwg..

