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Prediction of Tight Junction Localization Signal(s) in the Mammalian Systems

I.  The Localization Question:

Cellular compartmentalization is one of the major characteristics of the higher

organisms.  By dividing their cells into different sub-compartments, the mammals exert

spatial control and separation of their cellular proteins.  Improper localization of essential

proteins can have consequences ranging from mild diseases to lethality.  Therefore, the

ability for a cell to target its proteins to the correct place at the correct time is extremely

essential for both cellular functions and survival.

The first insight into the importance of protein localization came from the classic

studies on yeast secretory mutants.  In these mutants, a variety of the proteins responsible

fore regulating the secretory pathway were mutated, causing mis-localization of cellular

proteins.  (Kaiser, 1990)  As a result, these mutants demonstrated an abnormal

accumulation of transport vesicles in sub-cellular organelles and for some, a decrease in

cell viability.  Over the past decade, much effort has been spent on identification of

localization signals that are responsible for targeting proteins to a particular sub-

compartment of a cell, based on the primary amino acid sequence of a protein.  One of

the representative programs in the field is the pSort II program developed by Dr. Kenta

Nakai’s research group.  This program enable us to predict the presence of a variety of

localization signal for a number of organelles such as ER, Golgi, mitochondria, or

nucleus.

Another important characteristic of higher animal cells is the formation of

intercellular junctions.  Although many localization prediction programs are currently

available, no program is yet capable of predicting protein localization to the tight

junction.  In this paper, I propose to identify and predict tight junction targeting signals



by applying similar algorithms used previously by a number of programs to determine

other types of localization signals.  I will start this paper by presenting a brief review on

the biology of tight junction, followed by short summary discussions on the methods

currently available for identifying and characterizing sub-organelle localization signals.  I

will then suggest method for predicting tight junction localization signals based on

similar prediction programs described.  And finally, I will address the possibility of using

these algorithms to predict, on a whole genome basis, the proteins that are involved in

trafficking to the tight junction.

II.  The Biology of Tight Junction:

Epithelial cells associate with one another and form a lateral sheet lining of the

small intestine.  Tight junctions (TJ) are specialized plasma membrane microdomains that

form continuous branching strands around each epithelial cell, separating the apical side

from the basolateral side.  TJ serves two important cellular functions: (1) It serves as a

physical barrier that ensures no intermixing of the proteins between the apical (facing the

luman) and the basolateral (facing the blood) membranes.  (2) It regulates diffusion of

molecules and ions across the paracellular route.  Overall, proper formation of the tight

junction ensures the development and maintenance of epithelial polarity.  (Zahraoui,

2000)

Entrez search resulted in one hundred and ninety-two mammalian proteins that

have been demonstrated to localize to the tight junction.  All of these proteins appear to

have intrinsic ability to localize to the tight junction, instead of indirectly targeted to tight

junction by its interaction with tight junction residence molecules.  Assuming that the

tight junction localization signal is encoded in these primary amino acid sequences, I will

use these proteins as training set in the following exercise for developing localization

algorithms.   In the immediate paragraphs, I have included a short description of these

proteins and their possible biological functions.

Rab Family of Proteins:

The Rab proteins are small (20-40kD) G protein binding molecules that have been

implied as the master switch in regulating intracellular trafficking.  Many Rabs in the



mammalian system have been shown to localize to primarily one sub-cellular

compartment.  Specifically, the carboxyl terminal tail of the Rab proteins seems to be

essential in specifying the target site, as suggested by chimeric experiments. Two Rabs,

Rab8 and Rab13, have been demonstrated to localize to the tight junction.

Occludin Family of Proteins:

Occludins are integral membrane proteins which were found to concentrate within the

tight junction fibrils.  It is thought to play a role in the formation and regulation of the

tight junction paracellular permeability barrier.

Claudin Family of Proteins:

Claudins are Integral membrane proteins that are components of the tight junction

strands.

ZO Family of Proteins:

ZO Proteins belong to the Maguk family of cell junction proteins.  It is thought to

function as the molecular scaffold brining together many proteins at the tight junction.

Miscellaneous Proteins:

Other proteins that resulted form the search included the followings: paracellin, VAP-33,

mint3, cingulin, MAGI-1, and symplekin.

III.  Currently Available Methods for Localization Prediction Programs

Simple Consensus Sequences Based Method:

One type of localization signal is specified purely on the basis of its primary amino acid

sequence.  In this type of situation, an alignment among the training sequences is not

necessary.  A sliding window of a defined size is selected and each the windows of one

sequence is used to match against similar windows in the rest of the training sequences.

In this method, no gap is allowed and each amino acid is considered independent of its

neighbors.  A scoring matrix is generated from the training set and the best consensus



sequence is identified.  The best-studied example of this type of targeting sequence is the

ER retention signal, which consists of the amino acid bases of KDEL.  This signal is used

in the pSORT II program for identifying ER residence proteins.

Weight Matrix Based Methods:

The weight matrix based program was initially invented by von Heijne in 1986 and

undergone considerable improvement over the past decade.  The weight matrix, also

known as the Position-specific scoring matrix (PSSM), compares vertical variations

across pre-alignment family of sequences and no gaps are allowed in this method.

Values are assigned to each of the twenty amino acids, and the matrix values are

converted to log odds scores then to the ratio of the log score.  High values of the

matching log odds scores along the sequences will be selected and identified as similar

regions.  Some examples of programs based on this method include SPScan (GCG10,

1999) and SigCleave (EMBOSS, 1999).

Hidden Markov Model Method:

The Hidden Markov Model is a probabilistic model which considers all possible

combination of matches, mismatches, and gaps among the input sequences.  Although the

most common use of this model to make multiple sequence alignments, it has also been

used successfully to make sequence profiles as well as for pattern recognition.  The

standard Hidden Markov Model is build by Markov chains that consists of standard state,

insertion state, and deletion state.  The training sequences were used as input and the

transitional probability between the states were calculated.  The output model build by

the HMM program dependent largely on the inputs, and differs from training set to

training set.  Some example of the programs based on the Hidden Markov Model method

includes SignalP V2.0.b2-HMM (CBS, 2001) and the mitochondria localization signal

prediction program developed by Fujiwara et al.  (Fujiwara, 1997).

Neural Network Method:

Neural Network is an artificial intelligence based algorithm that trains a program by

simulating how our brain works.  The input of the network consisted of units that are



composed of symbolic data, and relationship between these input are used to train the

program to adjust the weights connecting these units.  Typically, an input sequence

window is transformed into a symbolic input layer.  This layer is then translated into an

output layer, often via a middleman hidden layer, to a predicted outcome.  Some example

of the programs based on the Neural Network method includes the SignalP  program

V1.1 (Nielsen, 1997) and the TargetP program (Emanuelsson, 2000).

Overall, consent of the current reviews seem to suggest that both the HMM and

the neural network program function much better than the consensus and weight matrix

methods for predicting localization signals.  Between the HMM and the Neural Network

methods, the success rates are comparable and are largely dependent on the types of

localization signal in question as well as input training sequences.  One of the drawbacks

of the neural networks is that it is generally more difficult to understand and interpret

how and why it makes its predictions.

IV. Generation of Tight Junction Localization Signal Prediction Programs

I have identified, from the current database, one hundred and ninety-two

mammalian proteins which have the intrinsic ability to localize to the tight junction.  If a

localization signal does exist for these tight junction associated proteins, it is likely

encoded in its primary amino acid sequence.  In this paper, I suggest to use these one

hundred and ninety-two sequences as input data to train programs that will be able to

identify and predict tight junction localization signals.  I suggest to divide the sequences

into twelve training set, each set composed of one hundred and seventy-six sequences as

training data and the remaining sixteen sequences as test subjects for evaluating the

success rate of this program.

First of all, if the tight junction localization signal is based purely on the presence

of a certain amino acid sequence, a consensus sequence based method can be used to

identify and locate identical or nearly identical, motif-like localization signals.  I have

tried this approach by using block program but was unable to identify a clear consensus



sequence among the input data.  This strongly suggests that tight junction localization

signal is not simply a consensus sequence among all the known training sequences.

To train for tight junction localization signals, I will not be applying the weight

matrix method for the following reasons: (1) The Position-specific scoring matrix method

is based on the assumption that the input sequences are somewhat related sequences.

However, from the initial biological analysis of the sequences in Part II, this is unlikely

the case since the training set composed of diverse sub-families of proteins as well as

outliers. (2) As stated from the end of part III, review papers in the field have suggested

that the weight matrix seems to be a less reliable method in general when used in

predicting localization signals to sub-compartments.  One of these papers described

experiments performed to evaluate the different localization programs and found that

PSSM based programs are less capable of recognizing false positive sequences embedded

in the test set, as compared to the HMM or Neural Network based programs. (Menne,

2000).

Although there are differences in success rate between a HMM based method and

a neural network based method in identifying localization signals, both methods are quite

good and it is difficult to know a prior, which method is the better one for predicting

tight junction localization signals.  The training sets suggested earlier in this part of the

paper is large enough to be used for developing both of these types of programs.  To use

a HMM based method, a program similar to the motif-based hidden Markov Model will

be developed.  (Grundy, 1997)  In this training program, one can use either a sliding

window of sequences as inputs, or apply an alternative program (for example, the EM

algorithm) to locate ungapped sequences that are similar and present in the majority of

the sequences to use as inputs.  Either way, these sequences will then be used as the

standard states, and the transition probability between it and the insertion or deletion state

will be calculated.  Given enough input sequences, a model can then be build that will

represent the profiles of sequences which is responsible for targeting a protein to the tight

junction.  Similar sliding window input sequences or ungapped sequences can also be

used as queries to build a neural network based program.  The prediction efficiency can

then be compared between a HMM based program and a Neural Network based program



to decide which of the two makes a better prediction program for tight junction

localization signals.

This localization signal could exist in the form of one or more small blocks of

consensus sequence(s), or as a global property of a certain part of the protein.

Alternatively, it can also exist in a form of types of post-translational modification to the

protein, which will be more difficult to decypher.  If the tight junction localization signal

is a sequence based, rather than a structure based signal, the amino acid sequences from

the training sets can be used directly as inputs.  However, if the success rate of the

program based on primary amino acid sequence does not provide us with a satisfactory

prediction rate, an improvement can potentially be made by entering the training

sequences in a structural context.  One possibility is by converting the primary amino

acid sequence into a string that reflects its neighboring environment before using it in the

training set.  One such possibility is to use an Amino Acid indexing method such as the

one developed by Bannai et al (Bannai, 2002).  After converting the training sequences to

the appropriate index, one can then feed these sequences into our HMM or Neural

Network based programs.

Last but not least, once a program has been generated which can be used to

identify the signature of a tight junction localization signal, one can then generate a

profile for the localization signal and mines the genomes for yet unidentified family of

proteins that can potentially be localized to the tight junction.  Experiments such as

immunofluorescence studies can then be performed in order to determine if these newly

identified molecules do indeed localize to the tight junction.  If proven true, these

sequences can then be used in the future training set and by this iterative effort, we can

hopefully advance our knowledge on how a protein is localized to the tight junction.
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