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Abstract
Determining the location of transcription factor binding sites is an important initial step
in solving the complexity of genetic networks. Numerous computational methods have
been proposed to assist biologists in finding putative transcription factor binding site
locations. These tools are typically good at finding the signal of an individual binding site
within the DNA strand but have low specificity for finding actual know binding sites
because they do not account fact that transcription factors interact with each other. This
project examines how these tools can be used to account for the combinatorial nature of
transcription factors and proposes some improvements.

Introduction
In order to understand the operation of the genetic networks of organisms we need to first
understand the mechanisms by which genes are transcribed. Transcription is initiated
through the interaction of various transcription factors and the RNA polymerase. An
initial step in understanding this interaction requires locating the binding sites for these
transcription factors. Because locating the transcription factor binding sites through
experiments is expensive and time consuming, the use of computational techniques to
find and characterize transcription factor binding sites can be a great aid to biologists.
Numerous computational systems have been developed to locate putative transcription
factor binding sites including BioProspector, MEME, AlignAce and MDSCAN.
Typically these tools look for signals for binding sites from a set of  sequences taken
from the  upstream region of genes that appear to be co-expressed from micro array
experiments.

Multiple EM for Motif Elicitation (MEME) is based on expectation maximization (EM).
The EM algorithm first makes an initial estimate of the alignment and uses it to create a
scoring matrix that represents the distribution of bases in the motif. This matrix is
compared to each sequence and the scoring matrix values are updated to maximize the
alignment of the matrix to the sequences. This is repeated interactively until it converges.
MEME uses a gradient decent algorithm which is prone to get stuck in a local maximum.
MEME uses various heuristics to try to avoid  this problem but it is not guaranteed to
return the best motif. The advantages of MEME is that it can find multiple motifs which
can occur multiple times and does not require that each sequence contain the motif. It
does require that the user estimate the size of the motif .



BioProspector and AlignAce are extensions of Gibbs sampling with a number of
improvements for searching for transcription factor binding sites. Gibbs sampling is a
stochastic technique that works on a set of sequences which are believed to contain the
motif. It starts by randomly removing one sequence and creating an initial motif by
randomly aligning the remaining sequences and computing the base composition
probabilities for each position. Next the optimal alignment is found by sliding the
sequence back and forth to maximize the ratio of the motif probability to the background
probability. Next the sequence which was originally left out is put back into the motif .
The start position is estimated by scoring each segment of the sequence against the
matrix. Weights for each segment are assigning using the motif. The start position is
picked at random using the weights to bias the seclection. This is repeated until the
residue frequencies in the columns do not change. BioProspector incorporates a number
of improvements over the basic Gibbs sampling algorithm. First it does not require that
every sequence contain the motif. It also handles multiple copies of the same motif within
the sequence. BioProspector can also search for a two-block motif where the motif is
separated into two parts with a short segment in-between which does not contribute the
the motif. In order for BioProspector to find the motif it is important to have the correct
background model. BioProspector generates a 3rd order hidden markov model based on
the background that it is given. It is also important that the correct background data be
used. Since different genomes have different base compositions and can have sections of
repeats the background data should be from the same genome as the sequences.  And be
from promoter regions which do not contain the same binding sites as the query
sequences. BioProspector can get stuck in a local maxima and therefore must be run
multiple times to find the true optimal alignment. It is also relatively slow and not
tractable for searching whole genomes on the current class of cpu’s. Gibbs sampling is an
effective method for detecting weak and complex signals in a set of sequences which
makes BioProspector and AlignAce very sensitive at finding signals of transcription
factor binding sites.

In contrast to BioProspector, MDscan  uses a deterministic algorithm which always
converges to the same result for a  given set of data. MDscan works best when sequences
can be separated into two groups. One group contains sequences believed to contain the
motif while the other group contains sequences which do not contain the motif. MDscan
starts with a word-enumeration strategy to look for w-mers in the top sequences. It then
enumerates  each non redundant w-mer (seed) and searches for all w-mers in the top
sequences with at least m base pairs  matching the seed. For each seed the top sequences
are used to form a motif weight matrix. The weight matrix is evaluated by a maximum
posterior scoring function which uses a measure of how often the matrix appears, how
well the matrix is conserved and the probability of finding the motif by chance. The top
10-50 matrices are used to scan the remaining sequences. A new w-mer is added or
removed from the weight matrix if doing so  increases the  score of the matrix. The
algorithm usually stabilizes in around 10 interactions and the top candidate motifs are
reported. The advantage of MDscan is that it is much faster than other methods such as
BioProspector and is tractable for searching entire genomes. The search time increases
only quadratically with respect to the total number of bases in the top sequences and
linearly with respect to the number of bases in the remaining sequences (Liu 2001).



MatInspector differs from the first three tools described in that it looks for the  signal of
previously know transcription factors in order to find new binding sites for these
transcription factors. The previous tools are used to look for sites in sequences which are
believed to contain sites in common while MatInspector is from a class of tools which
looks for occurrences of a know motif in individual sequences which may or may not
contain the binding site.  MatInspector builds a library of descriptions for binding sites
which contain a nucleotide distribution matrix and an vector of conservation  factors
computed from the amount that each position is conserved in the motif. The library is
constructed from literature references and entries in the TRANSFAC database (Matys
2003) which  have been experimentally verified to be transcription factor binding sites.
MatInspector searches for matches in two passes. The first pass computes a core
similarity for the ratio of the sums of the score of the sequence to the maximum possible
sore for that  position. If the core similarity is above the threshold the matrix similarity is
computed by recomputing the ratio while weighting each position by the conservation
factor. The binding  site for the transcription factor is described as a position weight
matrix (PWM).  The weight matrix  has a matrix position for each base and each position
in the binding site representing the probability of that base occurring in that position. The
score for any particular site is the sum of the matrix  values for that site's sequence. The
advantage of  using a tool like MatInspector is that  TRANSFAC represents the binding
site of transcription factors as a PWM. This allows  MatInspector to take advantage of
previously found binding sites. However, the use of a PWM is poor for finding binding
sites of unknown transcription factors.   PWM’s are a better representation of the binding
site than consensus sequences because they allow for the fact that some positions in the
binding site are more conserved than others and should be more important for the activity
of the site. Also the determination of whether a sequence matches a  consensus sequence
is usually a binary  decision while a PWM can give  a better quantitative understanding of
how well a new sequence matches the binding site. One of the difficulties in using this
method that PWM’s  do not  always properly describe the binding site. PWM’s assume
that each position in the site makes an independent contribution and does not have an
affect on the other positions. This is not always true. Attempts have been made to try
different representations of PWM’s such as di and tri nucleotide tables, neural networks
and hidden markov models. Each of these different  representations have been found to
have some success in certain circumstances but none have been shown to be superior for
all cases (Stormo 2000)

Within the last few years the performance of tools for finding transcription factor binding
sites has improved but is still plagued by a low specificity causing too many false
positives and in some cases low selectivity with too may false negatives (Fickett 1997).
The problem is not that the tools are unable to detect signals but that the signals
themselves are weak and occur frequently by random chance. Transcription factor
binding sites are typically short (5-15bp) and are many times not well conserved. This
causes many instances of the consensus motif of the site to occur by random chance
causing noise that obscures the signals from the true binding sites. Two possible reasons
for this are that the packaging of DNA into chromatin could cause some potential binding
sites to be obscured in a way the prevents transcription factors from finding them. A



second reason is that many transcription factors interact with each other and the
combinatorial effect has an influence on their ability to bind to the DNA strand. For
example, the strength of the signals on the DNA strand may not be strong enough for
either of two transcription factors to bind to it individually. However, if the two proteins
are interacting with each other the combined signal from the two sites may be enough for
the complex of the two proteins to bind to the DNA strand. The same holds true for
multiple transcription factors. None of the computational tools discussed so far take into
account the effect of the interaction of transcription factors have on their ability to bind to
the DNA strand. In order for computational tools  for finding transcription factor binding
sites to improve these combinatorial relationships must be taken into account.

To date few computational tools have addressed this area. One example is COBIND
(GuhaThakurta 2001) which looks for putative binding sites of two cooperatively binding
transcription factors. The algorithm works by maximizing the joint likelihood of two
binding site motifs. The binding sites are represented  by two position weight matrices
which are computed with an objective function derived from the thermodynamics of
protein-DNA binding. The drawback to COBIND is it only checks for two bindings sites
when sometimes multiple transcription factors are interacting and in contact with the
DNA strand. Also, COBIND’s ability to find the binding sites decreases as the distance
between the individual binding sites increase. The use of an objective function based on
the thermodynamics of protein-DNA binding has the advantage of giving a quantitate
feel for the binding affinity but may be ignoring some of the signal that is encoded in the
DNA sequence. The algorithm that COBIND uses is different than the two-block
algorithm used in BioProspector which was designed to look for the binding sites of
individual transcription factors that contact the DNA strand in two different locations.
When the two-block option is used in BioProspector the highest scoring motif is removed
from the matrix and then the next highest scoring motif is found. The combination the
two motifs are reported.

Little work has been done in studying the combinatorial effect or transcription factors.
One group analyzed micro array data to generate motif-association maps based on the
combinatorial nature of their expression patterns (Pilpel 2001). Another group scanned
the TRANSFAC and TRASCompel databases to find pairs of transcription factors known
to interact and used a measure on their preference to co-localize at specific distances to
predict  new binding sites in the human genome. (Hannenhalli 2002). Another team  did
a study to try to characterize the positioning of TFs within regulatory regions to look for
relationships which suggest that the proteins might be interacting (Wagner 1999)

One of the reasons so little has been computationally using  the combinatorial effect of
transcription factors is that the mechanism is not well understood. Difficulty in
crystallizing the transcription initiation complex has made it difficult to understand
exactly how transcription factors work together with the polymerase II to initiate
transcription. Typically we only have solved structures for the segment of the
transcription factors which are in contact with the DNA strand. This allows us to study
how the transcription factor interacts with the DNA strand  but we do not know what the



conformation of the rest of the protein or how it interacts with the other molecules in the
transcription initiation  complex(Brandon 1999)

One area that shows promise for studying the combinatorial relationship of transcription
factors is using the fact that they tend to cluster together into modules (Davidson 2001).
As an example, Figure 1 shows the upstream coding region of the endo16 gene in
Stongylocentrotus, a sea urchin. This particular gene plays an important role in
controlling the development of the Stongylocentrotus embryo. The figure show a 2300 bp
section of DNA. Protein binding sites are shown as boxes. 13 different proteins bind with
high affinity to 38 different sites in this region. The bindings sites tend to cluster into six
groups or modules labeled A-G. The tendency for transcription factors to cluster into
groups called cis-regulatory modules (CRM) has been observed in many eukaryotes.
Numerous studies have used this concept  to aid in locating and studying transcription
factor binding sites in, for example, muscle specific genes (Wasserman 1998)  and
Drosophila melanogaster development (Berman 2002) (Markstein 2002).

Fig. 1 From Yuh(1998)

Knowing that binding sites tend to cluster into CRM's can be used to aid in studying the
combinatorial relationships among transcription factors. In this project a set of known
CRM's were targeted to look for relationships that could be used to develop
computational tools and to gauge how well our current tools work in finding
combinatorial relationships.

Methods
A set of 19 known cis-regulatory modules (CRM) from a study by Berman et al. (Berman
2002) were used as the test set. This data was analyzed by a combination of
computational and manual inspection methods to look for patterns in the CRM's
themselves. The motivation was to determine to what extent we can find combinatorial
patterns within the CRM's. If we can find these patterns they could potentially be
incorporated into our set of computational tools and used as an aid to both locate
unknown CRM's and to suggest relationships which would help elucidate how they work.
The CRM's  were determined by first compiling at list of know transcription factors
which were know to be involved in the same genetic pathways. Literature searches were
done to find a list of  DNA sequences that the transcription factors bind to. Next MEME



was used to align the sequences and the results were used to compute position weight
matrices using the PASTER program. The authors then developed a web based tool
called CIS-ANALYST to search for CRM's using the PWM's in a similar way that the
MatInspector program does. From this they identified 19  CRM's .

We did an analysis of the data (from Berman 2002) which was used by PASTER to
construct the PWMs. The purpose was to find relationships between different positions in
the binding sites which could not be captured in a PWM. The Results showed that there
were some preferred inter depencies among the positions in the binding sites. For
example, in the binding sites for the hunchback transcription factor, if an A occurred in
position 8 an A also occurred in position 7 82% of the time compared  to  52% of the
time for all sites. When an A appeared in position 8 an A always occurred in position 7 in
the upstream regions of the eve, hb, ubx, en and kni genes.  A similar pattern was found
in the binding sites of the bicoid. When position 5 was a G, a T was in position 7 53% of
the time compared to 43% for  all sequences.  Also in examining the PWM's themselves,
in each matrix there were some positions which were highly conserved and others that
were not. This supports the idea that PWM's are often superior to a consensus sequence
in expressing the preference of a transcription factor because some positions are more
important than others.

Next the sequences for the CRMs were run through MEME and AlignAce. While these
sequences are different that what these programs are normally run on (upstream
sequences of co-expressed genes) the goal was to see if we could detect signals that
implied some kind of relationships.  In examining the output it was apparent that there are
fairly long segments that appear to be conserved within the CRM that did not correspond
to the known binding sites. This needs to be taken into account when scanning for
binding sites within CRM's because these motifs were always returned as the best motifs.
However, MEME did  find the motif for the hunchback transcription factor with a
consensus sequence of: ATTTTTTATGG as it's second highest scoring motif. And
AlignAce found the motif for Bicoid as its 8th highest scoring motif.

 Searches were submitting multiple times to  BioProspector  and Mdscan but the results
never returned. Cause is unknown.

Also a multiple sequence alignment was done on the CRM sequences to to see if there
were conserved patterns within the CRM sequences. Also, large conserved sections of the
sequences could be make it very difficult for any promoter find algorithm of find short
motifs representing binding sites. The BCM Search Launcher from the  Baylor College of
Medicine  was used to perform a ClustalW multiple sequence alignment.  It was difficult
to see any relationships in the alignment.

To look for relationships among the spacing and orientation for the binding sites the CIS-
ANALSYT(http://www.fruitfly.org/cis-analyst) was used to display the locations of
predicted binding sites. The program has a web interface and asks which transcription
factors to look for in either a single gene upstream region or the entire genome. It then
uses the PWM's for the know transcription factors to search for putative binding site



locations and display an annotated plot of the binding site locations. The results are show
in Figures 2-5 in Appendix I. The results showed that the binding sites definitely tend  to
cluster and there are some preferences. Some TFs, such as hunchback, tend to form a
triplet of two sites relatively close together and a third slightly further away. In some
cases it appears that if a TF only appears twice in a cluster they are spaced close together
but when three are in a cluster the third is further from the pair. It was, however difficult
to find any common patterns or preferences which could characterize each CRM's as a
whole.

Discussion
In conclusion there are some preferences for combinatorial relationships among
cooperatively interacting transcription factors but it is difficult to detect any absolutes.
One of the obstacles in studying  combinatorial relationships  is the lack of data. To date,
most of the evaluations of  promoter finding tools  and the studies of combinatorial
relationships have used data from the Saccharomyces cerevisiae genome. This is due in
some degree to fact that the yeast genome was one of the first eukaryotes genomes to be
sequenced, is relatively small, and there is an abundance of micro-array data available for
it. However, because the upstream regulatory region is relatively short (~600bp)
compared to higher eukaryotes (~10k bp) yeast is probably not the best eukaryotic
organism to screen for CRMs or cooperative interactions among known TFs (Wagner
1999). Given that these relationships are not easy to discern we need to first develop tools
which will can generate and sift through the data to help infer relationships which can
then be verified through experiment.

As we begin to find and characterize CRM’s we will be able to extract more information
from the DNA strand. For example, studies have shown that within CRM there are rules
which govern the spacing and arrangement of the transcriptional regulatory elements.
Papatsenko observed that the majority of  high-affinity binding sites in fly enhancers are
spaced at distances in 10bp increments on the same side of the DNA helix. This may
indicate the positions of nucleosomes or other DNA-protein complexes in CRMs
(Papatsenko 2002).

More rigorous statistical analysis needs to be done on the CRM's that we are aware of  so
that they can be characterized. Given the complexity of the combinational interaction of
transcription factors it is unlikely that any single method will be able to accurately predict
the locations of binding sites with a high degree of specificity and sensitivity. What is
needed is a set of computational tools, which detect and characterize the signals on the
DNA strand and then look for relationships. Once these relationships are better
understood it may be possible to integrate important techniques into a suite of integrated
tools or into one multidimensional tool.



First we need  a more flexible way of expressing the binding sites. It was apparent from
the data for the individual sites that a PWM is superior in expressing  the affinity of a
binding site as opposed to a consensus sequence. However, there are cases were the
individual nucleotide positions exhibit preferences on one other which implies  that they
exert some influence on one another. HMM or neural nets can do a better job of
expressing the affinity of the binding site for some cases. These richer expression models
need to be integrated into a motif search tool to detect new sites for know transcription
factors. We also need statistical tools which can capture the preferences for binding sites
such as spacing, order, and orientation. All of the tools need to be integrated into a
statistically rigorous system such as Bayesian framework so that both the probabilities
and the heuristics can be integrated. Also, the tools for searching for potential new
binding sites need to take into account the combinatorial affect of interacting
transcription factors in a way similar to COBIND but be able to account for multiple
transcription factors and flexible spacing between them.

The current set of tools used to locate putative binding sites appear to be able to detect
the signal from binding sites of some of cooperatively operating transcription factors. The
biggest problem is separating the true binding sites from the noise. The current set of
algorithms are designed to detect similar patterns between sequences of characters. The
problems is that many times the strongest signals are coming from patterns that do not
appear to represent true binding sites. We need to be able to filter these signals based on
the governing relationships of transcription factor interaction. We need to identify more
potential CRMs and start to characterize them. In addition to looking for inter genetic
regions with clusters of know binding sites, phyogeintic footprinting can be used to locate
conserved regulatory control regions across genomes. Also Chromatin
immunoprecipitation studies can yield another source.
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Appendix I CRM Plots

Fig 2. (contains genes hb, CG8112, jockey{}1268)

Cluster #1 [654, 1302] has 11 sites (Kr=2, Su(H)=3, ftz=2, ftz-f1=1, kni=3)
Cluster #2 [2785, 3765] has 14 sites (Kr=2, Su(H)=1, bcd=1, cad=1, hb=9)
Cluster #3 [12949, 13646] has 11 sites (Kr=2, bcd=3, ftz-f1=1, hb=5)
Cluster #4 [19174, 20809] has 34 sites (Kr=7, Su(H)=2, bcd=1, cad=7, ftz=1, ftz-f1=4,
hb=10, kni=2)
Cluster #5 [23786, 24435] has 10 sites (ftz=1, ftz-f1=2, hb=7)



Fig. 3 (contains genes CG12133, Adam, CG12134, eve, TER94)
Cluster #1 [7271, 8730] has 30 sites (cad=6, ftz-f1=1, hb=12, kni=11)
Cluster #2 [13612, 14662] has 15 sites (Kr=4, Su(H)=1, bcd=2, cad=3, ftz-f1=2, hb=3)
Cluster #3 [16248, 18038] has 34 sites (Kr=1, Su(H)=1, bcd=1, cad=8, ftz=5, ftz-f1=5,
hb=12, kni=1)
Cluster #4 [18165, 19981] has 25 sites (Kr=7, bcd=5, cad=2, ftz=5, ftz-f1=5, hb=1)
Cluster #5 [21791, 22503] has 10 sites (Kr=1, cad=4, hb=4, kni=1)

Fig 4 (contains genes tll)
Cluster #1 [2419, 3400] has 17 sites (Kr=2, Su(H)=2, cad=3, ftz-f1=4, hb=2, kni=4)
Cluster #2 [11780, 12667] has 19 sites (Kr=1, Su(H)=1, bcd=1, cad=4, ftz-f1=1, hb=9,
kni=2)
Cluster #3 [13701, 15560] has 40 sites (Kr=8, Su(H)=3, bcd=4, cad=8, ftz=1, ftz-f1=1,
hb=14, kni=1)
Cluster #4 [19191, 19861] has 12 sites (Kr=1, Su(H)=2, cad=2, ftz=4, ftz-f1=1, kni=2)
Cluster #5 [20269, 21024] has 12 sites (cad=3, ftz=1, ftz-f1=3, hb=2, kni=3)
Cluster #6 [22219, 22910] has 11 sites (Su(H)=4, bcd=1, ftz=1, ftz-f1=3, hb=1, kni=1)



Fig. 5 (contains genes h)
Cluster #1 [-4, 2112] has 44 sites (Kr=11, Su(H)=2, bcd=4, cad=6, ftz=1, ftz-f1=3,
hb=15, kni=2)
Cluster #2 [4178, 6344] has 37 sites (Kr=13, Su(H)=1, bcd=3, cad=8, ftz-f1=1, hb=11)


