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1. PROTEIN FOLD AND REMOTE HOMOLOGS

1.1 INTRODUCTION

Life is a complex system of information storage and processing. Information is transmitted
vertically from cell to cell and at the same time, information is expressed horizontally within a
cell of an individual organism. Bioinformatics and, in particular, computational biology aims
at understanding biology at the molecular level. Among many of the on-going efforts to learn
biology, the protein folding has been one of those challenging areas in computational biology.
The challenge is to predict the native 3D structure or a fold of a protein from its amino acid
sequence and its secondary structure.
The three-dimensional structures of number of globular and membrane proteins have been
found experimentally and have been classified and annotated in various protein structural
databases. It is believed that there is a limited number of protein folds in nature. The protein
structure determination, therefore, falls into two categories: fold prediction and fold
recognition. The functional and structural annotation of unknown protein structure is initially
often performed by pairwise sequence similarity searches against protein sequence databases.
The reason is that it three-dimensional (3D) structure is conserved in evolution and is based
on protein primary sequence. If an unknown protein sequence can be aligned with a protein
with a known structure it can be assumed that the new protein would have similar 3D
structure. Accordingly if the probe has a sequence homolog, the protein structure prediction
method is then called fold recognition otherwise the problem is referred as fold prediction.

1.1.1 Prediction of Protein 3D Structures

The laws of physics and the evolutionary changes have affected the Three-dimensional (3D)
structure of proteins. According to the laws of physics, a protein molecule in solution is a
system of atoms that interact through a variety of forces, such as chemical bonds, hydrogen
bonds, Coulomb interactions, and Lennard-Jones forces. Under appropriate conditions, these
forces fold almost any random starting conformation of a protein into a stable, well-defined
3D structure (i.e., the native state) in a matter of milliseconds or seconds. Evolution, on the
other hand, resulted in families of proteins that share similar sequences, similar structures, and
often have related functions. Different proteins evolved through duplication, speciation, and
horizontal transfer, followed by accumulation of mostly neutral mutations.

Each of the two sets of principles that apply to the natural protein sequences and databases of
known protein structures gave rise to two approaches to protein structure prediction methods
(Baker, et al., 2001). The first approach, ab initio methods, predicts the structure from
sequence alone, without relying on similarity at the fold level between the modeled sequence
and any of the known structures (Bonneau, et al, 2001). The ab initio methods attempt to find
the global free energy minimum by an exploration of many conceivable protein
conformations. These methods assume that the native structure corresponds to the global free



energy minimum accessible. The second class of methods, which include threading and
comparative modeling, rely on detectable similarity spanning most of the modeled sequence
and at least one known structure (Blundell, et al, 1987). When the structure of one protein in
the family has been determined by experiment, the other members of the family can be
modeled on the basis of their alignment to the known structure. Comparative modelling is the
most widely used method for predicting the 3-D structure of a target protein. The method is
however limited to predicting the structure of proteins which are closely related to a template
protein of known structure. The comparative modelling process can be divided into five basic
steps: alignment of the target sequence with the sequence of a protein of known 3-D structure;
building of a framework structure based on the alignment; loop building; addition and
optimization of side chains; and finally model refinement. Apart from cases where the target
has a very close homologue of known structure, the vast majority of comparative models still
display quite serious errors in alignments. These methods are consequently loosing ground
(Jones, 2001).

Threading methods were initially designed to predict protein folds when no suitable template
structure could be found to create a model for comparative modeling prediction method. With
threading methods, proteins that are remote homologues of known protein sequence can be
examined for compatibility with the structural core of a known protein core. The query
sequence is threaded into a database of proteins cores to look for matches and optimization of
the potential energy function that includes parameters such as pair-wise potentials of side-
chain interactions and scores for buried hydrophobic residues. In addition, these methods can
include parameters derived from comparative modeling and ab initio predictions.

Comparative modeling and threading methods are knowledge based protein structure
prediction methods. These methods rely on classification and structures of known protein
structures. Since structures of many proteins have been determined experimentally and have
been classified based on their hierarchies. Few databases exist with detailed structural and
functional annotations. In 1971, the Protein Data Bank (PDB) was established. Since then,
few more structural databases have been created. These include Structural Classification of
Proteins (SCOP) database (Murzin et al, 1995), CATH (Orengo et al., 1997) FSSP, and
pCLASS.  The majority of proteins in these databases falls into globular or membrane
proteins categories. Based on content and arrangement of structure elements, globular
proteins are classified into the following categories: all α proteins, all β proteins, α/β proteins,
and α+β proteins. These categories are often called a class of protein. This kind of protein
classification was further refined to represent hierarchy of protein structures. The SCOP
database, for example, follows the class classification at the top level and subdivides it
consisting of folds, superfamilies, and families. Where fold is a specific arrangement of
secondary structure elements such as α helix bundle. Family is a group of proteins that have
significant level of structural similarity but not necessarily significant sequence similarity and
proteins in a superfamily have sequence similarity, which suggests common evolutionary
origin.



1.2 COMMON PROTEIN PREDICTION METHODS

Few methods have been deployed to find homologies in protein sequences and ultimately
protein structure. The most widely used methods involve either using pairwise searches or
using structural information. The pairwise search method uses a single sequence of the
unknown protein is scanned against each sequence in a database using programs such as
BLAST, FASTA or any dynamic programming. With PSI-BLAST, even remote homologies
can be found (Altschul, et al, 1997). In this iterative search method, the unknown sequence is
used to identify close homologues that are then aligned to generate a weighted profile
formalized as a position-specific scoring matrix (PSSM) (Henikoff & Henikoff, 1994). The
Psi-BLAST searches are more sensitive than pairwise sequence homologies search techniques
and are widely used. The reason being that PSI-BLAST searches are bale to find structural
similarities even among proteins sequences that are not homologs.

Structural techniques have been used at a variety of levels (Jones, 1997). These can be
classified in two types: Profile method and optimization of a pesudo-potential based on the
relative attraction of the residue pairs. In the profile method the environment of each amino
acid residue, secondary structure, and area of side chains in the structural core is determined.
Based on this information, the protein is characterized and aligned. The proteins in the
database are similarly aligned and the query protein sequence is then scored against the
proteins in the database (Bowie et al, 1991). For pesudo-potential based method, the contact
potential of adjacent amino acid residues in the structural core are determined and the
conformations that would give rise to a most stable structure is predicted (Jones, et al., 1992).

In this project, I will describe and analyze one sequence-based protein structure prediction
method and another one that incorporate both the sequence and structural based profiling. In
particular, I will use Hidden Markov Model (HMM) and 3-Dimensional Position Specific
Scoring Method (3D-PSSM) in this project. I chose these methods in this study because these
two methods have fared well at CASP (Critical Assessment of methods for Structure
prediction of Proteins) meetings. CASP is an international experiment, which is organized
every 2 years since 1994 (Shortle, et al. 1995). The purpose of CASP is that the prediction
community is challenged to predict the structure of a number of proteins whose structures are
not yet publicly known, and these 'blind' predictions are then evaluated by a number of
independent assessors who compare the predictions with the experimentally determined
structures.

1.2.1 Three-Dimensional Position-Specific Scoring Method, 3D-PSSM

The 3D-PSSM method takes a protein sequence and attempt to predict its 3-Dimensional (3D)
structure and probable function (Lawrence, et al., 2000). It uses a library of known protein
structures onto which the sequence is "threaded" and scored for compatibility. The 3D-PSSM
combines multiple-sequence profiles such as PSI-Blast (1D-PSSMs), more general profiles
containing more remote homologues (3D-PSSMs), matching of secondary structure elements,



and propensities of the residues in the query sequence to occupy varying levels of solvent
accessibility; specifically, solvation potentials.

The general procedure in predicting a protein fold is as follows:

Figure 1 A Schematic of 3D-PSSM Procedure

First, a representative profile library of known protein structure is created. The library of
known structures is taken from the SCOP database that classifies proteins into homologous
Superfamilies. From this library, a representative parent protein sequence is chosen and is
called (Master A0). Upon selection, the method generates 1D-PSSM or 1D-profile using PSI-
Blast (A0,A1,A2…). Next, it uses STRIDE (Fisherman & Argos, 1995) to make a three state
(helix, coil, sheet) secondary structure assignment of each residue in Master A protein
sequence. In addition, using DSSP technique, propensities of residues to varying level of
solvent exposure are determined. Finally, it generates a 3D-PSSM of the representative
sequence. To generate 3D-PSSM for the representative Master A0 protein, it uses protein
sequences in the homologous superfamilies family. Proteins in same fold families may not
have similar sequences or functions but share similar tertiary structures. Using this
information, accurate residue equivalencies for a fold can be determined. Representatives



from the profile family is chosen to create ID-profiles such as B0, B1, B2… and C0, C1,
C2… and used to create a 3D-PSSM for the representative protein, Master A0.

The query sequence undergoes similar processes. The PSI-Blast is first used to derive its
sequence homologues to create 1D-profile and PSI-Pred is used to predict its secondary
structure. Lastly, The query sequence is aligned using a dynamic programming algorithm,
FOLDFIT (Russell, et al., 1998) against each library entry. The query is first aligned to the
template using the 1D-PSSM of the library entry, then the 3D-PSSM and finally the process is
reversed and the library sequence is aligned to the 1D-PSSM of the query. The highest
scoring pass is taken as the final result. The server is publicly available at
http://www.sbg.bio.ic.ac.uk/~3dpssm and was used for this project.

1.2.2 Hidden Markov Model, HMM

This method develops HMM models to recognize remote homologies. A hidden Markov
Model (Rabiner, 1989) has been used to describe a series of observations by a stochastic
process. Before solving protein alignment and structure problem, HMMs were used in speech
recognition where observations were sounds forming a word. In that case the model described
the random process that produces these sounds with high probability. In speech recognition,
the “alphabet” forms the phonemes in a particular language and in protein folding, the
“alphabets” are the 20 amino acids that form a protein sequence. A model in a set of proteins
is the one that sets high probability for a sequence in a particular set. Once a model has been
constructed using unaligned sequences, dynamic programming, while searching a database,
can be used to generate multiple alignments of protein sequences. The model can therefore,
distinguish different families of proteins.

One method for predicting the structure of a target sequence involves: constructing an HMM
from the target and identified homologs and scoring the sequences in the Protein Data Bank
(PDB). Later, the process scores each target sequence against a library of HMMs constructed
on a representative subset of PDB (Karplus, K. 1997). Typically use of profile HMMs in
homology detection is more complicated because of the need to first construct the profile
HMM. The procedure consists of three steps. (i) A multiple sequence alignment is made of
known members of a given protein family.  The quality of the alignment and the number and
diversity of the sequences it contains are crucial for the eventual success of the whole
procedure. (ii) A profile HMM of the family is built from the multiple sequence alignment.
The model-building program uses information derived from the alignment together with its
prior knowledge of the general nature and structure of proteins. (iii) Finally, a model-scoring
program is used to assign a score with respect to the model to any fold sequence of interest;
the better the score, the higher the chance that the query fold sequence is a member (homolog)
of the protein family represented by the  model. In this way each sequence in a database can be
scored to find the members of the family present in the database.

Profile hidden Markov models (HMMs) are amongst the most successful procedures for
detecting remote homology between proteins and predicting protein srtutures. There are two



popular profile HMM programs, HMMER (Eddy, et al, 1998) and Sequence Alignment
Modeling (SAM).(Karplus, K. et al, 1998). SAM uses a single target sequence and creates a
HMM using an iterative method to refine the model. One of its main uses is to produce
multiple alignments of homologs of the target sequence. Developed by the bioinformatics
group at the University of California, Santa Cruz
(http://www.cse.ucsc.edu/research/compbio/sam.html). The SAM model-scoring program
calculates E-values directly using a theoretical function that takes as its argument the
difference between raw scores of the query sequence and its reverse.

1.3 3-DIMENSIONAL STRUCTURE PREDICTIONS FOR TRYPSIN HOMOLOGS

The prediction of the three-dimensional (3D) structure of a protein from its one dimensional
(1D) involves the kind of fold that the given amino acid sequence may adopt. If similarity
between two proteins is detectable at the sequence level, structural similarity can usually be
assumed, because the 3D structures of proteins from the same family are more conserved than
their primary sequences. With this in mind, I chose a trypsin molecule (1TRY) and its
sequence homolgs as a starting query sequences for this project. Later I used 3D-PSSM and
HMM based SAM-T99 server to predict their 3D structures. It was expected that all the
homologs of the starting sequence would have similar fold as the starting trypsin molecule. In
addition, the idea of this study was to highlight any sensitivity and accuracy differences
between two prediction methods. In particular, I was interested to examine which technique is
able to identify remote homologies more accurately as both these techniques would be able to
predict the fold. The reason for accurate prediction is that their profile library does contain
1TRY protein.

The 1TRY molecule has been isolated from Fusarium  oxysporum and its sequence and X-ray
structure has been determined (Rypniewski, et. al, 1993).  Trypsin or serine proteases are
ubiquitous. They are found in viruses, bacteria and eukaryotes and include proteins with
exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activity. Serine proteases
of the chymotrypsin family share a common fold and are involved in diverse and important
functions, including digestion and degradative processes, blood coagulation, fibrinolysis,
cellular and humoral immunity, embryonic development, and fertilization (Rawlings et al.,
1994).

According to SCOP structural classification, 1TRY is classified as follows:

1. Class: All beta proteins

2. Fold: Trypsin-like serine proteases
barrel, closed; n=6, S=8; greek-key
duplication: consists of two domains of the same fold

3. Superfamily: Trypsin-like serine proteases

4. Family: Eukaryotic proteases



5. Protein: Trypsin(ogen)

6. Species: Mold (Fusarium oxysporum)

The structural view of 1TRY is shown in Figure 2.

Figure 2. Structure of Inhibited Trypsin From Fusarium-Oxysporum At 1.55-Angstrom.

Strutural homologs of trypsin were identified first, using Smith-Waterman Algorithm on
DeCypher machine (http://decypher.stanford.edu/index_by_algo.htm). Its sequence homologs
that were used in this project are listed in Table 1.

Table 1 1TRY sequence homologs used in this study.
Accession Number Definition
P35049 fusarium oxysporum. trypsin precursor (ec 3.4
P04814 drosophila melanogaster (fruit fly). trypsin
P54625 drosophila erecta (fruit fly). trypsin beta p
P54624 drosophila erecta (fruit fly). trypsin alpha
P42277 drosophila melanogaster (fruit fly). trypsin
P54626 drosophila erecta (fruit fly). trypsin delta/gamma precursor
P42276 drosophila melanogaster (fruit fly). trypsin
P35004 drosophila melanogaster (fruit fly). trypsin
O97370 euroglyphus maynei (house-dust mite). mite al
P29786 aedes aegypti (yellowfever mosquito). trypsin



Regardless of the prediction method used, it was expected that each of these homologs would
belong to similar SCOP classification as 1TRY because they have sequence similarity and
have similar functions.  The results are tabulated in
Table 2

Table 2.3D Structure Prediction. At least one true positive was noted for each sequence
homologs
Accession
Number

Class Fold Superfamily Family 3D-
PSSM

SAM
T99

P35049

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P04814

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P54625

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P54624

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P42277

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P54626

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P42276

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P35004

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

O97370

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

P29786

All beta
proteins

Trypsin-
like serine
proteases

Trypsin-like
serine
proteases

Eukaryotic
proteases

Yes Yes

 As shown in Table 2., both these prediction methods were successful in identifying the
correct folds. It is not suprising because both these methods attempt to combine sequence
profile alignment methods with fold recognition. This should, in principle, produce an



alignment method that produces accurate alignments both where the target and template
proteins are in the same superfamily. It is expected that even an increasingly sensitive
sequence comparison methods such as PSI-BLAST will equal or even surpass the abilities of
fold recognition methods such as SAM and 3D-PSSM. This is true especially in this study
because predicted homologs are in the training data set. The reason is that am using the
publicly available servers and they use “nr” protein database that probably contain my query
sequences. In view of that, I will highlight their differences in their ability to recognize
remote homologies.

It was noted that despite recognizing the correct folds, the two methods predicted different
structural neighbors within the predicted folds. One reason for different set of predicted
structural neighbors could be in the manner the profile model is created and/or the database
they use to search the model profile sequences. Both these methods rely on creation of profile
models and searching the database and scoring the results. Because resulting structural
homologs are different, it is evident that the two methods differ. To learn more about the
model creation, I performed a ClustalW multiple alignment method on the resulting predicted
protein sequences obtained by 3D-PSSM and SAM-T99. As an example of such an analysis,
Figures 3 and 4 displays the phylogenic trees of 1TRY’s predicted structural neighbors.

Figure 3 Structural neighbors of 1TRY as predicted by 3D-PSSM



 
Figure 4 Structural neighbors of 1TRY as predicted by SAM-T99.

1.4 DISCUSSION AND CONCLUSIONS

Overall the 3D prediction for 1TRY protein and its homologs are given in Table 2. It appears
that both methods were able to successfully predict the fold to be Trypsin-like serine
proteases as expected. Nonetheless, the two methods identified different structural homologs.
Multiple sequence alignment results shown in Figure 2 and 3 clearly demonstrate that 3D-
PSSM is better in recognizing remote homologies than SAM-T99. The phylogenic trees are
orthologous because they are rooted trees where its leaves (proteins) belong to different
species such as mouse, humans, etc and branch length of the two trees indicate that 3D-PSSM
was able to identify more disparate remote homologies than SAM-T99 technique. The
difference in the predicated structural homologs within the structural folds can be ascribed to
the prediction algorithm and process that SAM and 3D-PSSM utilizes. The SAM-T99
protocol, uses a multiple alignment (or even a single seed sequence) to build an HMM, which
is then used for searching for new members of the family. When new members are found, the
HMM is retrained to include them, new multiple alignments are made, and the process
iterated. SAM-T99 starts with a query sequence and searches the non-redundant protein
database using WU-BLASTP (Altschul, et al., 1990) to produce of potential homologs. This
method has proven more effective in finding remote homologs than competing sequence-
based methods such as PSI-BLAST and ISS (Karplus, et al., 1998).

On the other hand, 3D-PSSM method explicitly uses information from structural alignments
in searching remote homologs of known 3D structures. In this method, a library of known
structures is taken and a 1D-PSSM for a representative protein is created by using PSI-
BLAST. Later, its profile is generated by predicting its secondary structure and using
solvation accessibility information at each residue. This information is used to create a 3D-
PSSM fold library using remote sequence homologs in the superfamily. Latter allows
inclusion of structural information even when proteins have dissimilar sequences. The query



sequence’s 1D-PSSM and secondary structure is predicted and aligned against 1D-PSSM and
3D-PSSM of the template library created earlier.

In summary, SAM-T99 builds profile HMM model based on multiple sequence alignment and
general nature of the proteins and 3D-PSSM uses sequence alignment and structural
information to predict 3D Structural homologs. Based on the results obtained in this analysis,
both methods are able to identify the correct fold for the query protein sequences, however
3D-PSSM fares better in recognizing remote homologs. According to LiveBench-2 evaluation
results, 3D-PSSM indeed performs better than most threading servers in predicting protein
structures (Janusz, M., et. al. 2001).

Protein folding in living cell is a complex and dynamic process involving a number of other
molecules called chaperones. The cellular environment assists specific interactions with
various molecules, therefore protein is only a part of the whole system and that amino acid
sequence may not necessarily contain all the information to fold it up in its native active form.
Homologous proteins with their relative sequences usually evolve from a common ancestor,
and nearly always have similar three-dimensional structures and often have similar functions.
However, a difference in activity is always a possibility (Russell et. al. 1998; Hegyi &
Gerstein, 1999). In view of that, I believe that the protein-folding and especially predicting its
function is a very challenging problem and cannot be solved for a many of proteins in nature
without considering the network of specific molecular interactions. Automated threading
procedures based such as HMM and in particular 3D-PSSM are quite successful in predicting
protein folds as shown here and in CASP4 and CASP5 meetings. However, it is not clear that
either these fold recognition methods described here or elsewhere will be able to distinguish
individual protein structures within the same fold. As seen here, both these methods were able
to predict the fold but predicted different set of structural homologs that had different
functions. Besides the common folds and common motif overlap, these techniques were not
able to distinguish them.

Although, 3D-PSSM also attempts to suggest functional similarity of the query with the
template, both these techniques can be improved using human intervention. Most prediction
methods, and fold recognition methods in particular, are designed to predict the structure of a
single domain, and therefore fare very badly when confronted with a large multidomain target
protein. For example, prediction abilities of automated SAM T-99  (Karplus K. et al. 2001)
were improved when multi-domain proteins were split manually and folds for individual
domains were determined accurately. In addition, most solvation and contact potential
methods used in structural profiling as in 3D-PSSM use interactions of amino acids that are
immediate neighbors in the protein core. I believe that one should consider long-range
interactions in defining structural profiles as a folded protein could have such interactions.
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