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Abstract 
Multiple Sequence Alignment is a crucial task in Bioinformatics. Most of the commonly used multiple 
alignment methods are based on a dynamic programming approach. This approach however requires 
time proportional to the product of the sequence lengths and also doesn’t provide an extensible platform 
for evaluating different objective functions. Tree-based algorithms, which combine results from pairwise 
alignments, have also been proposed. However, these algorithms depend on the existence of a tree that 
describes the relations between the sequences, and this tree cannot always be obtained. Recently 
Evolutionary Algorithms have been used successfully in a wide variety of applications to find solutions 
for hard optimization problems. They offer the advantage of operating on several solutions 
simultaneously, combining exploratory search through the solution space with exploitation of current 
results. In this paper, the focus is on usage of Evolutionary Algorithms for multiple Sequence alignment. 
Aspects of Evolutionary Algorithm, which are of immediate concern to multiple sequence alignments, 
are discussed. Also a critical analysis of two evolutionary algorithms for multiple sequence alignment, 
namely MSA-EA (an Evolutionary Algorithm to improve Clustal-V) and SAGA (a genetic algorithm 
dedicated for multiple sequence alignment) has been done. Results from these two evolutionary 
algorithms have also been compared with traditional approaches. 
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1. Introduction 

Multiple Sequence Alignment is an optimization problem that appears in diverse scientific fields. 
During the last decade, there has been an increasing interest in the biosciences for methods that can 
efficiently solve this problem for sequences such as biological macromolecules, DNA and proteins. 
Multiple Sequence Alignment has been used to address many critical problems in bioinformatics. 
Multiple sequence alignment of a set of sequences can provide information as to the most alike regions 
in the set. This in turn helps help demonstrate homology between new sequences and existing families. 
Multiple sequence alignment has been used to help find diagnostic patterns for families (Bairoch et al., 
1997), and to predict secondary or tertiary structure of new sequences (Rost and Sander, 1993). Another 
use for consensus of information retrieved from a multiple sequence alignment is for the prediction of 
specific probes for other members of the same group or family of similar sequences in the same or other 
organisms. Once a consensus pattern has been found, database-searching programs may be used to find 
other sequences with a similar pattern. In the laboratory, a reasonable consensus of such patterns may be 
used to design polymerase chain reaction (PCR) primers of amplification of related sequences. Once the 
alignment is found, the number or types of changes in the aligned sequence residues may be used for a 
phylogenic analysis (Felenstein, 1998). The resluting alignments can be used to generate profiles 
(Gribskov et al., 1987) or Hidden Markov Models (HMM) (Haussler et al., 1993) that can be used to 
search databases for distantly related members of the family. 
 
In general, two basic classes of multiple alignment programs have been developed. When making a 
global alignment, the algorithm attempts to align sequences chosen by the user over their entire length. 
Local alignment algorithms automatically discard portions of sequences that do not share any homology 
with the rest of the set.  
 

1.1 Problems with automatic generation of Multiple Sequence Alignment 

A multiple alignment is used to discover relationships within a set of sequences that may have been 
diverging for millions of years. The relationships that researchers are interested in are typically 
evolutionary, structural, and functional. To discover meaningful relationships, one would require an in-
depth knowledge of the evolutionary history and structural properties of these sequences. However in 
real life this information is rarely available. Researchers instead use generic empirical models of protein 
evolution [1, 2], based on sequence similarity. Unfortunately, these can prove difficult to apply when the 
sequences are less than 30% identical. Also, accurate optimization methods that use these models are 
typically very expensive (in terms of computation resources) for more than a handful of sequences. This 
is why most multiple alignment methods rely on approximate heuristic algorithms. These heuristics are 
usually a complex combination of ad hoc procedures mixed with some elements of dynamic 
programming. Overall, two key properties characterize them: the optimization algorithm and the criteria 
(objective function) an algorithm attempts to optimize. 
 

1.2 Classification of Optimization Algorithms 

To get an idea of where Genetic Algorithms fall in the currently available array of multiple sequence 
alignment applications, its important to look at the major categories. Optimization algorithms roughly 
fall in three categories: the exact, the progressive, and the iterative algorithms.  
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• Exact: These types of algorithms try to perform an optimal or a sub-optimal alignment within 
some well defined bounds [3], [5]. Unfortunately, typically they are limited by the number of 
sequences they can handle and the type of objective function they can optimize.  

• Progressive: Progressive alignment [4, 6] methods use dynamic programming to build a 
multiple alignment starting with the most related sequences and then progressively adding less 
related sequences to the initial alignment. This approach has the advantage of speed and 
simplicity.  However the major problem with the progressive alignment methods is that errors in 
the initial alignments of the most closely related sequences are propagated to the multiple 
alignments. 

• Iterative: Iterative alignment methods depend on algorithms able to produce an alignment and to 
refine it through a series of cycles (iterations) until no more improvement can be made. Iterative 
methods can be deterministic or stochastic, depending on the strategy used to improve the 
alignment. The simplest iterative strategies are deterministic. They involve extracting sequences 
one by one from a multiple alignment and realigning them to the remaining sequences [10] [16]. 
The procedure is terminated when no more improvement can be made (convergence). Stochastic 
iterative methods include HMM training, simulated annealing (SA) [17, 20] and evolutionary 
computation such as genetic algorithms (GAs) [21, 22, 23, 24] and evolutionary programming 
[25, 26]. Their main advantage is to allow for a good separation between the optimization 
process and evaluation criteria (objective function). It is the objective function that defines the 
aim of any optimization procedure. 

 
In this paper, the focus is on the evolutionary algorithms. 
 

1.3 The Objective Function 

In an evolutionary algorithm, the objective function is the criteria used to evaluate the quality (fitness) 
of a solution (individual). To be of any use, the value that this function associates to an alignment must 
reflect its biological relevance and indicate the structural or the evolutionary relation that exists among 
the aligned sequences. In theory, a multiple alignment is correct if in each column the aligned residues 
have the same evolutionary history or play similar roles in the three-dimensional fold of RNA or 
proteins. Since evolutionary or structural information is rarely at hand, it is common practice to replace 
them with a measure of sequence similarity. The rationale behind this is that similar sequences can be 
assumed to share the same fold and the same evolutionary origin as long as they are more than 30% 
identical over 100 residues or more.  
 
Accurate measures of similarity are obtained using substitution matrices. A substitution matrix is a pre-
computed table of numbers where each possible substitution/conservation receives a weight indicative 
of its likeliness as estimated from data analysis. In these matrices, substitutions (conservations) observed 
more often than one would expect by chance receive positive values while under-represented mutations 
are associated with negative values. Given such a matrix the correct alignment is defined as the one that 
maximizes the sum of the substitution (conservations) score. An extra factor is also applied to penalize 
insertions and deletions (Gap penalty). The most commonly used model for that purpose is named 
‘affine gap penalties’. It penalizes an insertion/deletion once for its opening (gap opening penalty, 
abbreviated GOP) and then with a factor proportional to its length (gap extension penalty, abbreviated 
GEP). This measure can be extended for the alignment of multiple sequences in many ways. For 
instance, it is common practice to set the score of the multiple alignment to be the sum of the score of 
every pairwise alignment it contains (sums of pairs)[27]. While that scoring scheme is the most widely 
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used, its main drawback stems from the lack of an underlying evolutionary scenario. It assumes that 
every sequence is independent and this results in an overestimation of the number of substitutions.. 
 
An objective function always defines a mathematical optimum, that is to say an alignment in which the 
sequences are arranged in such a manner that they yield a score that cannot be improved. Evolutionary 
algorithms can be very useful to answer questions like whether an objective function can be optimized 
and whether it is biologically relevant or not. They make it possible to design new scoring schemes 
without having to worry, at least in the first stage, about optimization issues.  
 
In the next section, one of these evolutionary techniques known as genetic algorithms (GA) is discussed. 
Genetic Algorithms are described along with another closely related stochastic optimization algorithm: 
simulated annealing. 
 

2. Evolutionary Algorithms 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of natural biological 
evolution. Evolutionary algorithms operate on a population of potential solutions applying the principle 
of survival of the fittest to produce better and better approximations to a solution. At each generation, a 
new set of approximations is created by the process of selecting individuals according to their level of 
fitness in the problem domain an d breeding them together using operators borrowed from natural 
genetics. This process leads to the evolution of populations of individuals that are better suited to their 
environment than the individuals that they were created from, just as in natural adaptation. Evolutionary 
algorithms model natural processes, such as selection, recombination, mutation, migration, locality and 
neighborhood.  
 
Two stochastic strategies have been widely used for sequence analysis: simulated annealing (SA) and 
genetic algorithms (GA).  

2.1 Simulated Annealing 

Simulated annealing (SA) [28] was the first stochastic algorithm used to attempt solving the multiple 
sequence alignment problem. Simulated Annealing does not actually belong to the field of evolutionary 
computation. But in practice it has influenced the genetic algorithms used in sequence analysis to a great 
extent. SA relies on an analogy with physics. The idea is to compare the solving of an optimization 
problem to some crystallization process (cooling of a metal). In practice, given a set of sequences, a first 
alignment is randomly generated. A perturbation is then applied (shifting of an existing gap or 
introduction of a new one) and the resulting alignment is evaluated with the objective function. If that 
new alignment is better than the previous one, the previous one is replaced. Otherwise it replaces it with 
a probability that depends on the difference of score and on the current temperature. The higher the 
temperature the more likely an important score difference will be accepted. Every cycle the temperature 
decreases slightly until it reaches 0. From the perspective of an evolutionary algorithm, SA can be 
regarded as a population with one individual only. Perturbations are similar to the mutations used in 
evolutionary algorithms. Apart from the population size of one, the main difference between SA and any 
true evolutionary algorithm is the extrinsic annealing schedule. However Simulated Annealing based 
algorithms are typically extremely slow. This serious limitation makes it much harder to use it as the 
black box one needs to evaluate the design new objective functions. 
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2.2 Genetic Algorithms 

It is in an attempt to overcome the limits of SA that evolutionary algorithm were adapted to the multiple 
sequence alignment problem.  Genetic algorithm is an optimization technique that was formulated 
during the early years of the 1970’s by John Holland [29]. This technique is useful for finding the 
optimal or near optimal solutions for combinatorial optimization problems that traditional methods fail 
to solve efficiently. 
The genetic algorithms approach is based on the assumption that simulating an evolutionary process in a 
population of potential solutions can eventually “evolve” good solutions. Biological terms are 
conveniently used to describe this process: chromosomes are the potential solutions. Every chromosome 
is composed of several genes, the solution parameters. Many chromosomes form a population. 
Successive populations are referred to as generations. Crossover is the exchange of genes (solutions 
parameters) between two chromosomes (solutions). Mutation is the random change of one or more 
genes in a chromosome. Offsprings are the new chromosomes created by two parent chromosomes by 
crossover. The genetic algorithms process starts with an initial population composed of random 
chromosomes, which form the first generation. Crossover is used to combine genes from the existing 
chromosomes and create new ones. Then, the best chromosomes are selected to form the next 
generation. This selection is based on a fitness function, which assigns a fitness value to every 
chromosome. The ones with the best fitness value “survive” to give offsprings for the new generation, 
and the process is repeated until satisfactory solutions evolve. 
 
The main advantage of genetic algorithms over other optimization methods is that there is no need to 
provide a particular algorithm to solve a given problem. It only needs a fitness function to evaluate the 
quality of different solutions. Also since it is an implicitly parallel technique, it can be implemented very 
effectively on powerful parallel computers to solve exceptionally demanding large-scale problems. 
 

2.2.1 Comparison with Simulated Annealing 

Evolutionary algorithms are parallel stochastic search tools. Unlike SA, which maintains a single line of 
descent from parent to offspring, evolutionary algorithms maintain a population of trials for a given 
objective function. Evolutionary algorithms are among the most interesting stochastic optimization tools 
available today. However implementation of an evolutionary algorithm dedicated to multiple alignment 
is much less straightforward than with simulated annealing. In other areas of computational biology, 
evolutionary algorithms have already been established as powerful tools. These include RNA [30, 31] 
and protein structure analysis [32, 33]. Among all the existing evolutionary algorithms (genetic 
algorithms, genetic programming, evolution strategies, and evolutionary programming) genetic 
algorithms have been by far the most popular in the field of computational biology. 
 

2.2.2 Key Ingredients of Genetic Algorithm 

Any Genetic Algorithm strategy deals with two important ingredients: the selection method and the 
operators. Selection is established in order to lead the search toward improvement. It means that the 
best individuals (as evaluated using the objective function) must be the most likely to survive. To serve 
the GA purpose, this selection strategy cannot be too strict. In stead it should allow some variety to be 
maintained all along the search in order to prevent the GA population from converging toward the first 
local minimum it encounters. Evolution toward the optimal solution also requires the use of operators 
that modify existing solutions and create diversity (mutations) or optimize the use of the existing 
diversity (crossovers) by combining existing motifs into an optimal solution. The main difficulty to 
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overcome when adapting a GA to a problem like multiple sequence alignment is the design of a well-
suited series of operators. The reason for this is in genetic algorithms the operators (and the problem 
representation) largely control the manner in which a solution landscape is analyzed. 
 

2.2.3 Existing Genetic Algorithm Based solutions for Multiple Sequence Alignment 

Usage of evolutionary algorithms in multiple sequence alignment has been in practice for quite some 
time. 

• Attempts to apply evolutionary algorithms to the multiple sequence alignment problem started in 
1993 when Ishikawa et al. published a hybrid Genetic Algorithm [34] that does not try to directly 
optimize the alignment but rather the order in which the sequences should be aligned using 
dynamic programming. Of course, this limits the algorithm to objective functions that can be 
used with dynamic programming. Even so, the results obtained that way were convincing enough 
to prompt the development of the use of GAs in sequence analysis.  

• The first Genetic Algorithm able to deal with sequences in a more general manner was described 
a few years later by Notredame and Higgins [24], shortly before a similar work by Zhang [23]. In 
these two GAs, the population is made of complete multiple sequence alignments and the 
operators have direct access to the aligned sequences: they insert and shift gaps in a random or 
semi-random manner.  

• Over the following years, at least three new multiple sequence alignment strategies based on 
evolutionary algorithms have been introduced [22], [26] and [25]. Each of these relies on a 
principle similar to SAGA: a population of multiple alignments evolves by selection, 
combination and mutation. The population is made of alignments and the mutations are string-
processing programs that shuffle the gaps using complex models. The main difference between 
SAGA and these recent algorithms has been the design of better mutation operators that improve 
the efficiency and the accuracy of the algorithms. 

 
These new results have strengthened the idea that the essence of the adaptation of GAs to multiple 
sequence alignments is the design of proper operators, reflecting as well as possible the true mechanisms 
of molecular evolution.  
 
In the next section, two examples of Genetic Algorithms are discussed to analyze the many ingredients 
used in the context of multiple sequence alignment. For both the cases, the process for initialization, the 
usage of appropriate operators and the way a given objective function is evaluated is analyzed. 
 
 

3. MSA-EA: an Improvement of Clustal V by Evolutionary Algorithm 

Thomsen et. el extended previous work with evolutionary algorithms (EA) by using MSA solutions 
obtained from the well-known Clustal V algorithm [35]. They took the Clustal V as a candidate solution 
seed of the initial EA population. They also made an effort to provide fair performance comparison 
between EA and the Clutsal V. 
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3.1 Initialization 

The population of initial parent alignment matrices was generated via random initialization of rows in 
the following way: First, for each sequence s(i) with length l(i) a random permutation from the set 
1,2,….,w  (representing all columns in the matrix). Second, the first l(i) numbers of the permutation 
were sorted in increasing order. Third, the permutation numbers were used as indices in the matrix 
row indicating where the according amino acid symbols from the sequence s(i) were placed. Finally, 
all positions in the matrix row not associated with an amino acid symbol were filled with a gap 
symbol. This procedure was repeated for all n sequences.  
For each MSA experiment below, the solution from Clustal V was used as one “seed" in the EA 
population in the hopes of starting the evolution in a more useful region of the search space than with 
a purely random seed. This of course bears the risk of driving the search towards the local optimum of 
the Clustal V seed solution. However, introducing just one single Clustal V solution among a 
population of random solutions, which are recombined and mutated during the run, yielded solutions 
that quickly arrived at more appropriate final solutions 

3.2 Operators 

During the evolutionary process the individuals were exposed to different variation operators in order 
to alter the candidate alignments. Only the important operators briefly mentioned here: 

The LocalShuffle operator picks a random amino acid from a randomly chosen row (sequence) in the 
alignment and checks whether one of its neighbors is a gap. If this is the case, the algorithm swaps 
(exchanges) the selected amino acid with a gap neighbor. If both neighbors are gaps then one of them 
is picked randomly.   
The BlockShuffle operator is very similar to LocalShuffle. First, a random block of consecutive amino 
acids is picked from a randomly chosen row (sequence). The block is then moved to the left or right by 
one position  (depending on which side contains gaps) if there is a neighbor position with a gap. If the 
block has gaps on both sides, it picks the direction of movement randomly.   

The GrowMatchedColumns operator randomly selects a fully matched column in the alignment 
(containing no gaps). If possible, the operator tries to swap amino acids with gaps in all sequences, 
such that a new fully matched adjacent column is generated either to the left or right of the column.  

The RecombineMatchedColumns operator takes two alignment genomes from the population and 
randomly selects a fully matched (non-gap) column in each of them if present, which must not involve 
the same amino acids in the sequence order. The operator then tries to create an alignment by 
swapping gaps with amino acids, such that the o spring contains feasible sequences that contain both 
matched columns  
The CleanUpGapColumns operator moves matched gap columns to the end (right-hand side) of the 
sequence, since they are only disrupting the current alignment. The operator is always applied after a 
modification of an individual by one of the four operators mentioned above. 
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3.3 Evaluation  

Prior to the candidate solution evaluation, all columns containing gaps only are moved to the right-
hand side of the alignment matrix using the CleanUpGapColumns operator and are ignored in the 
evaluation process. The optimization task is then defined as a fitness maximization problem, such that 
matching amino acids across sequences are rewarded and gaps (excluding those in matched gap 
columns on the very right hand side) are penalized 

Fitness = SymbolScore – GapPenaltyScore 
Where SymbolScore is the sum of all pairwise symbol matches, which is specified by a similarity 
matrix (such as PAM) and blocks substitution matrix (BLOSUM). These similarity matrices contain 
score for all possible matches and mismatches of amino acids symbols based on the frequency of 
occurrence of these changes in known protein sequence databases. Amino acids that are identical 
between two sequences at a particular location receive the highest score, whereas an unlikely amino 
acid mismatch at a given position will have lowest score. 

SymbolScore =  ∑ ∑
−

= +=

1

1 1
),(

n

i

n

ij
ljliPAM

 
 

4. SAGA: Genetic Algorithm for Sequence Alignment 

SAGA is a genetic algorithm dedicated to multiple sequence alignment. It follows the general principles 
of the simple genetic algorithms described by Goldberg [36]. In SAGA, each individual is a multiple 
alignment. The data structure chosen for the internal representation of an individual is a straightforward 
two-dimensional array where each line represents an aligned sequence and each cell is either a residue 
or a gap. The population has a constant size and does not contain any duplicate (i.e. identical 
individuals). The pseudo-code of the algorithm is reproduced on Figure 1.  

4.1 Initialization 

The challenge of the initialization (also known as seeding) is to generate a population as diverse as 
possible in terms of ’genotype’ and as uniform as possible in terms of scores. In SAGA, generation 0 
consists of a 100 multiple alignments randomly generated that only contain terminal gaps. These 
initial alignments are less than twice the length of the longest sequence of the set (longer alignments 
can be generated later). To create one of these individuals, a random offset is chosen for each 
sequence (between 0 and the length of the longest sequence); each sequence is shifted to the right, 
according to the offset and empty spaces are padded with null signs in order to give the same length L 
to all the sequences. Seeding can also be carried out by generating sub-optimal alignments using an 
implementation of dynamic programming that incorporates some randomness.  
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4.2 Operators 

As mentioned earlier, the design of an adequate set of operators has been the main point of focus in the 
work that lead to SAGA. According to the traditional nomenclature of genetic algorithms, two types of 
operators coexist in SAGA: crossover and mutation. An operator is designed as an independent 
program that inputs one or two alignments (the parents) and outputs one alignment (the child). Each 
operator requires one or more parameters that specify how the operation is to be carried out. For 
instance, an operator that inserts a new gap requires three parameters: the position of the insertion, the 
index of sequence to modify and the length of the insertion. 
These parameters may be chosen completely at random (in some pre-defined range). In that case, the 
operator is used in a stochastic manner. Alternatively, all but one of the parameters may be chosen 
randomly, leaving the value of the remaining parameter to be fixed by exhaustive examination of all 
possible values. The value that yields the best fitness is kept.  
Crossover Operators: Crossovers are meant to generate a new alignment by combining two existing 
ones. Two types of crossover coexist in SAGA: the one point crossover that combines two parents 
through a single point of exchange and the uniform crossover that promotes multiple exchanges 
between two parents by swapping blocks between consistent bits. The uniform crossover is much less 
disruptive than its one-point counterpart, but it can only be applied if the two parents share some 
consistency, a condition rarely met in the early stages of the search. Of the two children produced by a 
crossover, only the fittest is kept and inserted into the new population (if it is not a duplicate). 
Crossovers are essential for promoting the exchange of high quality blocks within the population. 
They make it possible to efficiently use existing diversity. However, the blocks present in the original 
population only represent a tiny proportion of all the possibilities. They may not be sufficient to 
reconstruct an optimal alignment, and since crossovers cannot create new blocks, another class of 
operators is needed: mutation. 
Mutation Operators: SAGA has multiple mutation operators described in [24].  However the gap 
insertion operator deserves special attention. With this operator an attempt is made to reconstitute 
backward some of the events of insertion/deletions through which a set of sequences might have 
evolved. The aligned sequences are split into two groups. Within each group, every sequence receives 
a gap insertion at the same position. Groups are chosen by randomly splitting an estimated 
phylogenetic tree (as given by ClustalW [37]). In the stochastic version, the length of the inserted gaps 
and the two insertion positions are randomly chosen while in the semi-hill climbing mode the second 
insertion position is chosen by exhaustively trying all the possible positions and comparing the scores 
of the resulting alignments. 
 

4.3 Evaluation 

Fitness in SAGA is measured by scoring each alignment according to the chosen objective function. 
The better the alignment, the better its score and the higher its fitness. To minimize sampling errors, 
raw scores are turned into a normalized value known as the expected offspring (EO). The EO indicates 
how many children an alignment is likely to have. In SAGA, EOs are stochastically derived using a 
predefined recipe: ’the remainder stochastic sampling without replacement’. This gives values that are 
typically between 0 and 2. Only the weakest half of the population is replaced with the new offspring 
while the other half is carried over unchanged to the next generation. This practice is known as 
overlapping generations. 
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It is during the breeding that new individuals (children) are generated. The EO is used as a probability 
for each individual to be chosen as a parent. This selection is carried out by weighted wheel selection 
without replacement and an individual’s EO is decreased by one unit each time it is chosen to be a 
parent. An operator is also chosen and applied onto the parent(s) to create the newborn child. Twenty-
two operators are available in SAGA. They all have their own usage probability and can be divided in 
two categories: mutations that only require one parent and crossovers that require two parents. Since 
no duplicate is allowed in the population, a newborn child is only accepted if it differs from all the 
other members of the generation already created. When a duplicate arises, the whole series of 
operations that lead to its creation is canceled. Breeding is over when the new generation is complete, 
and SAGA proceeds toward producing the next generation unless the finishing criterion is met. 
Conditions that could guarantee optimality are not met in SAGA and there is no valid proof that it may 
reach a global optimum, even in an infinite amount of time (as opposed to SA). For that reason an 
empirical criterion is used for termination: the algorithm terminates when the search has been unable 
to improve for more than 100 generations. That type of stabilization is one of the most commonly used 
condition to stop a GA when working on a population with no duplicate (i.e. a population where all 
the individuals are different from one another). 

 

5. Discussion: Comparison with Traditional Algorithms 

The primary advantage behind an evolutionary algorithm design is that it enables a robust platform, 
which any objective function could be tested in a seamless manner. Such a system allows evaluation of 
functions that are biologically relevant and those that are not.  
 
For instance, let us consider the popular weighted sums of pairs. It owes its popularity to the fact that 
algorithmic methods exist that allow its approximate optimization. MSA [3] is an algorithm that makes 
it possible to deliver an optimal (or a very close suboptimal) multiple sequence alignment using the 
sums of pairs measure. This sophisticated heuristic performs multi-dimensional dynamic programming 
in a bounded hyper-space. It is possible to assess the level of optimization reached by SAGA and MSA-
EA V by comparing it to MSA while using exactly the same objective function. 
The sums-of-pairs principle is to associate a cost to each pair of aligned residues in each column of an 
alignment (substitution cost), and another similar cost to the gaps (gap cost). The sum of these costs 
yields the global cost of the alignment. Major variations involve: i) using different sets of costs for the 
substitutions; ii) different schemes for the scoring of gaps; iii) different sets of weights associated with 
each pair of sequence. Formally, one can define the cost of a multiple alignment (A) as: 
 

ALIGNMENT COST (A) =  COST (Ai, j) ∑ ∑
−

= +=

1

1 1
,

N

i

N

ij
jWi

Where N is the number of sequences, Ai the aligned sequence i, COST is the alignment score between 
two aligned sequences (Ai and Aj) and Wi,j is the weight associated with that pair of sequences. The 
COST includes the sum of the substitution costs as given by a substitution matrix and the cost of the 
insertions/deletions using a model with affine gap penalties (a gap opening penalty and a gap extension 
penalty). Two schemes exist for scoring gaps: natural affine gap penalties and quasi-natural affine gap 
penalties [1].  
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Below a summary of comparison between MSA & SAGA and MSA & MSA-EA is given with respect 
to the weighted sum of pairs objective function. 



 
 
 

5.1 MSA & SAGA 

Using SAGA, it was possible to design new objective functions that make use of more complex gap 
penalties, take into account non-local dependencies or use position specific scoring schemes and to ask 
if this increased sophistication results in an improvement of the alignments biological quality. 
It is common practice to validate a new method by comparing the alignments it produces with references 
assembled by experts. In the case of multiple alignments, one often uses structure based sequence 
alignments that are regarded as the best standard of truth available. For SAGA, validation was carried 
out using 3Dali [38]. Biological validation should not be confused with the mathematical validation also 
required for an optimization method. In the case of SAGA, both validations were simultaneously carried 
out. 
Firstly, SAGA was used to optimize the sums of pairs with quasi-natural gap penalties, using MSA 
derived alignments as a reference. In two thirds of the cases, SAGA reached the same level of 
optimization as MSA. In the remaining test sets, SAGA outperformed MSA, and in every case that 
improvement correlated with an improvement of the alignment biological quality, as judged by 
comparison with a reference alignment. This suggests that SAGA is an adequate optimization tool that 
competes well with the most sophisticated heuristics.  
In a second aspect of that validation, SAGA was used to align test cases too large to be handled by 
MSA, and using as an objective function the weighted sums of pairs with natural gap penalties. 
ClustalW was the nonstochastic heuristic used as a reference. The use of natural penalties lead to some 
improvement over the optimization reached by ClustalW, and that mathematical improvement was also 
correlated with a biological improvement. Altogether, these results are indicative of the versatility of 
SAGA as an optimizer and of its ability to optimize functions that are beyond the scope of standard 
dynamic programming based algorithmic methods. 
 

5.2 MSA & MSA-EA 

MSA-EA and Clustal V were compared with respect to the three data sets mentioned below.  
 

Data Set N LSEQ avg (min, max) 

Histone H4 71 101.1 (71, 107) 

Globin 12 146 (136, 153) 

Cytochrome C 6 108.0 (82, 135) 
N = Number of Sequences 

LSEQ = Length of Sequences 
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Three sets of MSA data were used. First 71 protein sequences were used from histone H4, which is an 
essential protein for the folding of DNA into chromatin and is considered to be one of the most highly 
conserved proteins known. For this reason, alignment of histone H4 should be an easy task for both 
Clustal V and the EA. The second data set contained 12 sequences of proteins from the globin family, 
which were also used in Notredame et. al. Globins are also conserved across storage and transport. 
Third, 6 sequences of the protein cytochrome C were used. The proteins are involved in electron 
transport and are also quite well conserved. All the protein sequences were collected from Protein Data 
Bank (PDB) 
In all experiments, the characteristic performance differences between the MSA EA and Clustal V was 
observed. A typical observation was that the MSA EA made rapid improvements during the first 20000 
fitness evaluations. Further improvements happened throughout the entire evolutionary optimization 
process although the EA slowly seemed to settle on a good alignment and only improved the alignment 
once in a while during the end of the run. However their fitness curve shows that the evolutionary 
process was far from stagnation by the end of the run and additional evaluations could have improved 
the results. 
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6. Conclusion 

As discussed in the previous sections, Genetic Algorithms (such as MSA-EA and SAGA) are able to 
solve very complex optimization problems with a reasonable level of accuracy. This clearly indicates 
the importance and the interest of these methods in the field of sequence analysis. However currently 
genetic algorithms in this context suffer from two major drawbacks: unreliability and lack of speed. 

6.1 Unreliable 

Given a set of sequences, a general Genetic Algorithm may not deliver twice the same answer, owing to 
the stochastic nature of the optimization process and to the difficulty of the optimization. This may be a 
great cause of concern to the average biologist who expects to use his multiple alignment as a prediction 
tool and possibly as a decision aide for the design of expensive wet lab experiments. For example, if we 
consider the protein test cases analyzed here, SAGA reaches its best score in half of the runs on average. 
Same problem can be seen with MSA-EA case as well. If one is only interested in validating a new 
objective function, this is not a major source of concern since even in the worse cases the sub-optimal 
solutions are within a few percent of the best found solution.  

6.2 Slow 

More than instability, genetic algorithms currently suffer from another drawback: computation 
efficiency. A common problem with almost all Genetic Algorithm approaches for sequence alignment 
has been the long computational time required for useful results. When starting with a random 
initialization, evolutionary approaches can take hours to search for useful alignments, whereas Clustal V 
and Clustal W only require a matter of seconds to achieve similar results on sequences of reasonable 
length and percent identity. In a real-world scenario the user does not want to wait several hours for a 
good alignment, he/she wants a reasonable alignment right away and will usually be satisfied with the 
ones provided by the Clustal series. In the case of MSA-EA, the solution to this problem was to use the 
Clustal solution as a seed in the initial population of candidate alignments. Although this bears the risk 
of misguiding the optimization process toward local optima, it ensures that the EA solution will be at 
least as good as the one provided by Clustal. In case of SAGA, using Clustal as the seed solution was 
not feasible as SAGA is a more general Evolutionary Algorithm based approach. However both MSA-
EA and SAGA are designed for parallel implementation, which can improve the speed significantly. 
 
In spite of the drawbacks of Genetic Algorithms in multiple sequence alignment, there are at least two 
important fields of application exist for which they uniquely suited. The first one is the analysis of rare 
and very complex problems for which no other alternative is available, such as the folding of very long 
RNAs. Secondly, Genetic Algorithms provide us with a unique way of probing very complex problems 
with little concern; even with a very simple GA one can quickly ask very important questions and 
decide weather a thread of investigation is worth being pursued or should simply be abandoned. 
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7. Figure 1: Pseudo-Code of MSA-EA Algorithm 

This is the pseudo-code of MSA-EA [35] 
Begin 
 Initialize with Clustal’s seed and random individuals 
 Cleanup gap columns 
 Evaluate 

 While (not termination-condition) do 
  Begin 
   Mutate individuals 
   Recombine individuals 
   Clean up gap columns 
   Evaluate 
   Selection 
  End 
 End 
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8. Figure 2: Pseudo-Code of SAGA Algorithm 

This is a layout of the SAGA Algorithm. This pseudo-code indicates the main steps that take place 
during the optimization [24] 
 
Initialization: 1. Create G0, an initial random population 

 
Selection: 2. Evaluate the population of n(Gn) 

3. If the population is stabilized than END 
4. Select the individuals to replace 
5. Evaluate the expected offspring 

Variation: 6. Select the parent(s) from Gn 
7. Select an operator 
8. Generate the offspring 
9. Keep or discard new offspring in Gn+1 
10. Go to step 6 until all Gn+1 is complete 
11. n = n +1 
12. Go to step 2 

End: 13. End 
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