

Methods of Phylogenetic Analysis: New Improvements
on Old Methods.

Biochem 218 Final Project

Michael Gordon

March 10, 2003

Introduction:
 Phylogenetic analysis presents a unique problem in biology, because evolutionary
history can never be known with certainty. The purpose of any phylogenetic analysis is
to estimate the evolutionary relationships between a set of homologous taxa, which can
be anything from morphological characteristics to molecular sequences (reviewed in
Mount, 2001). The result is a tree composed of “nodes” and “branches”, where the
terminal nodes (or “leaves”) correspond to the taxa being studied (henceforth assumed to
be DNA sequences), the internal nodes represent ancestral sequences, and the branches
represent the topological relationship between the nodes (reviewed in Saitou, 1996).
 While many different methods have been developed for inferring phylogeny,
they can all be thought of as members of two broad classifications: (1) those methods
that use an algorithm to directly build a tree through a series of defined steps; and (2)
those methods that define a criterion to be maximized (or minimized), and then use an
algorithm to evaluate potential trees based on this criterion (Swofford et al., 1996). The
first class of programs works largely by converting the similarity between pairs of
sequences into evolutionary distance, and then using a defined set of steps to build a tree.
These methods are computationally very fast, but suffer from two major downfalls: (1)
evolutionary information is lost when overall similarity between sequences is observed,
rather than individual mutation events (Hendy and Penny, 1982); and (2) it is difficult to
reliably assess the confidence of a tree produced by any given algorithm (Swofford et al.,
1996). For these reasons, purely algorithmic methods will not be discussed further.
 In contrast, the second group of methods proceeds in two steps. First, an
optimality criterion is defined, which is simply a score used to assess the value of a
particular tree. Second, an algorithm is used to compute the value of this function for
various trees, while searching for the best tree (the one that maximizes the criterion)
(Swofford et al., 1996). While these methods are appealing because they have the
promise of finding the optimal tree according to the applied criterion, they can be
computationally slow for even moderate numbers of taxa, to a point where the amount of
time required for an exhaustive search is prohibitive. However, this limitation has led to
the development of countless computational methods that attempt to reliably get as close
to the optimal tree as possible, in a reasonable amount of computational time.
 In this paper, I will first briefly discuss the two most widely used criteria-based
methods: Maximum parsimony and Maximum likelihood (ML). After outlining the
theoretical and practical differences between these two methods, I will discuss recent
attempts to improve the utility of maximum likelihood by using genetic algorithms to
overcome the incredible computational power required to implement this approach.

Maximum Parsimony:
 Maximum parsimony (or simply parsimony) analysis is intuitively appealing
because it is based on finding the simplest solution to an observed set of data (reviewed
in Swofford et al., 1996; Saitou, 1996). Essentially, parsimony attempts to build a tree
that minimizes the number of evolutionary changes required to explain the observed data
(in our case, DNA sequences). Therefore, the optimality criterion (which in this case is
minimized) is total tree length. The length of the tree is defined as the number of
character state transformations (mutations to the biologist) required to explain the

existence of the nucleotides at all positions in a set of aligned sequences (Swofford et al.,
1996). Mathematically, this translates to finding a tree that minimizes the function:

Where L(τ) is the tree length; B is the number of branches; N is the number of nucleotide
characters; k’ and k’’ are the two nodes incident to branch k; xk’j and xk’’j are nucleotide
characters from the data, or inferred characters on internal nodes (more on this below);
and diff(y,z) specifies the cost of a transition from state y to state z (Swofford et al.,
1996).
 In simplified terms, parsimony algorithms evaluate a given tree by individually
looking at each column of nucleotide characters in a set of aligned sequences, summing
the length of the tree required to account for each of the characters in that column, and
then summing the results for all columns (Saitou, 1996). To evaluate the tree length
required for each column, nucleotide characters are inferred for each internal node, and
the cost of traveling along each branch is then evaluated (Swafford et al., 1996).

Problems with Parsimony:
 The very thing that makes parsimony analysis so appealing (its simplicity), is also
its most serious shortcoming. Simply put, if two sequences sharing a node both have a
‘G’ nucleotide at a given position, the most parsimonious model is that the ancestral
sequence also had a ‘G’, and there were no changes along either of the branches
descendant from that ancestral node. Unfortunately, this is not necessarily the case. For
instance, consider the following example (adapted from Mount, 2001):

The true tree is shown on the left represents the true phylogeny of four taxa, with their
corresponding nucleotides at a given position. This tree illustrates a case of convergent
evolution, where each ‘G’ arose independently along a branch with a higher rate of
sequence evolution than those leading to the ‘A’ characters. However, the most
parsimonious tree that explains the data is shown on the right. This is a simple case
where parsimony would not find the correct tree due to long branch lengths leading to the
potential for super- imposed, unobserved mutations.
 More complicated proofs of this failure of parsimony analysis have been
presented previously (for example, Hendy and Penny, 1989 and Felsentstein, 1978).
However, each boils down to the fact that parsimony is only reliable when the sequences

L(τ)= Σ Σ
k=1 j=1

B N

wj..diff(xk’j , xk’’j) (Swofford et al., 1996)

being compared are very closely related. Any time there is variation in the evolutionary
rate among branches of a tree, or a given branch represents enough evolutionary time to
introduce a significant number of super- imposed mutations, parsimony will be unreliable.
Essentially, parsimony would work perfectly if we could observe each mutation in a
sequence over evolutionary time. Since this is impossible, we must look for a method
that attempts to model the changes that occur during evolution by accounting for
unobserved as well as observed mutations.
 A related problem with parsimony is that only certain positions in the sequence
alignment yield information. For a position to be informative, it must have at least two
different examples of at least two different characters (Mount et al., 2001). Therefore,
positions that do not meet these criteria are deemed uninformative, even though under a
different evolutionary model (for example maximum likelihood), information could be
gleaned from these positions.
 Another potential problem with parsimony is that it is significantly slower than
the purely algorithmic distance-based methods mentioned above. This is due to the
potentially enormous number of trees that must be evaluated, depending on the number of
taxa involved. In fact, the number of unrooted bifurcating trees for n taxa is given by: N=
(2n-5)!/[2n-3(n-3)!] (Saitou, 1996). This means that for 20 taxa, there are 2.2x1020
possible unrooted trees. However, this problem has largely been overcome for parsimony
by using more sophisticated tree-searching algorithms, some of which will be discussed
in a later section with respect to their application in Maximum likelihood analysis (which
is orders of magnitude more computationally intense than parsimony (Lewis, 1998)).

Maximum Likelihood, Part I: The optimality criterion
 While parsimony methods seek phylogenetic solutions that minimize the amount
of evolutionary change required to explain a data set, Maximum likelihood methods
attempt to find solutions that have a maximum probability of being correct, given a
particular evolutionary model (Swofford et al., 1996). This distinction may at first appear
semantic, but it is extremely important when (as described above) the evolutionary time
involved is long enough to produce a substantial number of multiply mutated positions
within a sequence. Furthermore, unlike parsimony, maximum likelihood methods
consider branch lengths when calculating the probability of a particular tree being
correct. The importance of this difference is illustrated in the following example
(adapted from Swofford, 1996):

Shown above is a theoretical “true” tree, and the nucleotides at a given position within
each taxa. α represents the branch from node 1 to node 2, and β represents the branch
from node 1 to the leaf with nucleotide ‘C’. Assuming that node 2 represents an ancestral
‘A’, we know that a mutation must have occurred somewhere along α or β . While a
parsimony method would find equal value in assigning an ‘A’ or a ‘C’ to node 1,
intuitively we can see that this ancestor is more likely to be an ‘A’ because α is much
shorter than β . This becomes critical if one was to add one extra branch, which
terminated in a ‘C’. Under parsimony, this branch could be added onto either α or β with
an equal number of evolutionary changes. However, maximum likelihood would favor a
tree where the new branch was added to β , which is indeed the more likely scenario.
 Much like parsimony, maximum likelihood evaluates each column in a multiple
sequence alignment independently (these methods are sometimes referred to as “character
based”). Therefore, if we consider only one column, maximum likelihood evaluates a
given tree based on the total probability that each of its branches exists. In other words,
what is the probability that a change occurs between characters x and y along the length
of the branch that connects them? Since a Markov model is assumed, these individual
probabilities are considered independent, and can be multiplied to produce the total
probability for a given column. Furthermore, since each sequence position (column) is
assumed to be independent, the total probability for a tree is the product of all the column
probabilities (Felsenstein, 1981; Swofford et al., 1996). Mathematically, this was
presented by Felsentstein (1981) as follows:

For the tree shown above, numbers 0-8 represent the character states (nucleotides) at each
node in the tree. Clearly, some of these states (1-5) are known, while others (0,6,7,8) are
unknown. Let sx represent state x and vz represent branch z. Therefore, Psxsy(vz)
represents the probability of changing from x to y over branch length z. The prior
probability of s0 (the root) is represented by πs0, and is determined by the base
composition of the sequences being studied. The likelihood of the tree would be:

L = ππ s0 Ps0s6(v6) Ps6s1(v1) Ps6s2(v2) Ps0s8(v8) Ps8s3(v3) Ps8s7(v7) Ps7s4(v4) Ps7s5(v5)

However, states 0,6,7, and 8 are unknown, and rather than inferring them (like
parsimony), maximum likelihood sums the probability of all possible bases in each of
these positions, giving:

This equation can then be made into algorithmic form if one assigns conditional
probabilities to each node. Let Lsk(k) be the conditional likelihood for the state of node
k. Then, as we traverse the tree from the leaves inward, for any node k, whose immediate
decendants are i and j, we can compute the conditional likelihood for all four values of sk
as follows:

This algorithm is iterated until it reaches node 0, where the overall likelihood is
calculated by the following equation:

L = ΣΣ ππ s0 {ΣΣ Ps0s6(v6)[Ps6s1(v1)][Ps6s2(v2)]} {ΣΣ Ps0s8(v8)[Ps8s3(v3)][ΣΣ Ps8s7(v7) (Ps7s4(v4))

(Ps7s5(v5))]}

s0 s6 s8 s7

Lsk(k) = (ΣΣ Psksi(vi)Lsi(i)) (ΣΣ Psksj(vj)Lsj(j))
si sj

L = ΣΣ ππ s0 Ls0(0)
s0

The above equations begin to illustrate the computational intensity of this method,
especially if the number of taxa becomes large. Not only does the number of trees to be
evaluated quickly become prohibitive (as mentioned above), but evaluating each tree
becomes increasingly laborious. This problem is exacerbated further by other functions
required to optimize the branch length for every tree evaluated (not discussed explicitly
here, but reviewed in Swafford et al., 1996).

Problems with the Maximum likelihood criterion:
 Aside from the computational power required to implement this method
(discussed in detail below), it is difficult to find much fault with maximum likelihood
methods. This is largely because it can be broadly applied using whatever evolutionary
model for sequence change over time that a specific implementation requires. However,
if one looks at the assumptions that maximum likelihood algorithms make, there could be
slight cause for concern. These assumptions are essentially the independence of changes
over different branches of a tree, and of different positions within a sequence. The latter
assumption is likely violated in a number of cases. These include: (1) the accumulation
of insertions and deletions, each of which tend to involve more than one adjacent
nucleotide within a sequence; and (2) selective pressure on protein coding stretches of
DNA. One can easily imagine that mutation at a given site could put selective pressure
on an adjacent site to change (or not to change), thereby yielding a more desirable codon.
For instance, if a GTA codon (valine) is mutated to TTA (leucine), the protein might be
fully functional, but a subsequent change in the third position to TTT (phenylalanine)
would likely impair the protein’s function and be selected against, while the same
mutation in the original codon (GTA to GTT) would be silent. Some more recent efforts
have been made to address this problem (see Goldman and Yang, 1994).
 Another potential problem with maximum likelihood is that it does not appear to
account for species to species changes in genome base composition. For instance, the
overall base composition of the data set is incorporated into the πs0 term described above,
but this does not account for variability between regions of the tree. These variations
could have an impact on the likelihoods of transition between specific nucleotides in
local areas of the tree. It seems that local estimates of nucleotide composition could be
incorporated into a maximum likelihood algorithm. In fact, this problem has been
tackled by Galtier and Gouy (1995).
 Others, including Gaut and Lewis (1995), have pointed to another source of
problems with maximum likelihood: site to site variation in the rate of mutation. This
problem, and the several solutions designed to account for it, are beyond the scope of this
paper, and will not be discussed.
 Despite the potential problems with the original implementation of ML (many of
which have since been addressed to some extent), it is widely considered the best way to
perform phylogenetic reconstruction, and has outperformed other methods on a number
of occasions (eg. Kuhner and Felsenstein, 1994; Huelsenbeck, 1995). We will therefore
assume that this is the current ideal, look at the practical limitations of its
implementation, and examine how these limitations can be overcome.

Maximum Likelihood II: Finding the best tree (the old way).

Exhaustive approaches:
 For small numbers of taxa (a popular threshold is 11), the simplest and best way
to find the most likely tree is to evaluate all possible trees. Such an exhaustive search is
guaranteed to find the most likely tree. Similarly, the branch-and-bound method
developed by Hendy and Penny (1982) will find the best tree, but without doing an
exhaustive search. The principle of the branch-and-bound method is to make what
amounts to a tree of all possible trees (referred to here as the search tree). In other words,
a tree with only three taxa is placed at the top of the search tree, and each successive
branch of the search tree corresponds to adding a new branch to a particular existing
branch of the phylogeny being built. The branch-and-bound method then takes a depth-
first approach to traversing the search tree, while eliminating paths tha t cannot possibly
lead to a phylogeny that is more likely than the best case tested so far (reviewed in
Swafford et al., 1996).
 Branch-and-bound methods are guaranteed to find the best possible tree topology,
but are still quite slow. In fact, in the worst case scenario, all possible trees must still be
evaluated. In today’s age of whole organism sequencing, we routinely would like to be
able to evaluate the phylogeny of gene families with many more members than can be
handled by simple branch-and-bound methods. Therefore, we must look for less
computationally intense ways to get as close to the optimal tree as possible.

Heuristic Approaches:
 Heuristic approaches are those that attempt to follow the best path to a solution,
based on information received along the way. These approaches can be very simple, or
very sophisticated, and each comes with its own limitations.
 When Felsenstein (1981) first presented his maximum likelihood principles, he
identified the need for a search strategy that was “less ambitious” than an exhaustive
search. Therefore in his implementation of ML, he employed what would now be
referred to as a “stepwise addition” heuristic (reviewed in Swofford et al., 1996).
Conceptually, this approach is similar to branch-and-bound methods. However instead of
starting down every path of the search tree and eliminating paths only when it is
impossible that the best solution lies farther along that path, stepwise addition follows
only one path. This path is determined by starting with a tree of 3 taxa, determining the
most likely place to add a fourth taxon, then taking the resulting four-taxon tree, finding
the most likely place to add a fifth taxon, and so on.
 While this approach is conceptually simple and appealing, it is also clearly very
flawed. The flaw is that the globally optimal tree is unlikely to be the optimal choice at
every addition step, and is therefore unlikely to be found. Stepwise addition is therefore
referred to as a greedy algorithm (Swofford et al., 1996) – one that is always taking the
best solution offered in the present, without ever looking into the future. In the worst
case scenario, an early decision in the search tree will lead down a path with only final
trees that are very far from optimal.
 Due to the glaring problems with stepwise addition algorithms, attempts have
been made to improve the resulting trees by performing rearrangements, such as “branch
swapping”. While the details of these analyses will not be discussed here, it is important

to note that methods do exist to improve trees made by even the most rudimentary
heuristic algorithms. However, these methods also have serious limitations. Most
notably, if a better tree lies several rearrangement steps away from the original tree, that
solution will never be found if any of those steps do not (by themselves) provide an
increase in likelihood.

Maximum Likelihood III: finding the best tree (a new way).
 Genetic algorithms are not a new idea, but ironically have only recently been
applied to biological problems (reviewed in Foster, 2001). The essence of a genetic
algorithm is that it uses the principles of evolution to computationally arrive at a solution
to an optimization problem. By selecting the fittest individuals among a set of randomly
varied ones, over many generations, a genetic algorithm applies selective pressure on a
population of solutions, hoping to eventually produce the fittest individual possible
(Foster, 2001).
 The terms used when describing genetic algorithms should not be confused with
their biological meanings. For instance, each solution within a ‘population’ is often
referred to as a ‘chromosome’ (or ‘individual’). The measure of each chromosome’s
ability to solve the problem at hand is referred to as its ‘fitness’, and this fitness is defined
by each individual’s particular ‘alleles’, which correspond to the parameters to be
optimized. In each ‘generation’, the fittest individuals leave the most ‘offspring’ to the
next generation, after undergoing random events of ‘mutation’ and ‘recombination’ with
other individual solutions (reviewed in Foster, 2001).
 A genetic algorithm was first adapted for analyzing the phylogeny of nucleotide
sequences by Lewis (1998). In the algorithm used there, the population in each
generation consists of individual phylogenetic trees. The fitness of each tree is then
assessed by calculating its natural log likelihood score (lnL). The parameters that define
this score are: The tree topology; the individual branch lengths; the κ parameter (defined
as the transition/transversion rate ratio by the HKY model (Hasegawa et al., 1985)); and
the base frequencies (Lewis, 1998). It is important to note that in this algorithm, the
branch lengths are varied along with the topology in each generation, but are not
optimized for each tree. This is in contrast to all other implementations of ML, where the
branch lengths are optimized prior to evaluating the likelihood of each tree examined
(Lewis, 1998). This important distinction translates to significant time saved, as branch
length optimization is the most computationally intensive part of evaluating each tree
during traditional ML implementations (Lewis, 1998).
 The genetic algorithm (Lewis, 1998) first defines a population of n individual tree
solutions. In the first generation, these consist of random solutions to the defined
problem. The fitness of each individual (defined by lnL) is computed as described above,
and the individuals are ranked on the basis of this score. The value i is then defined by
each individual’s ranking, with i=1 corresponding to the highest ranked individual, and
i=n being the lowest ranked individual. The probability of each individual leaving an
offspring to the next generation is defined by p(n – i +1) (p is chosen such that the sum of
all probabilities is 1), with the following exception: The individual with the highest lnL
automatically leaves k offspring (k is a user-defined value). The rest of the next
generation’s population (n – k individuals) is selected based on the probability defined
above.

 All of the offspring, except one copy of the fittest individual, are then potentially
subjected to mutation and recombination. The excepted individual is left unchanged to
ensure that the likelihood of the best solution in each successive generation cannot
decrease. Mutations imposed on individuals can consist of changes in branch length,
and/or topological rearrangements. Branches are selected for mutation with a probability
defined by the user, and subjected to a multiplicative factor drawn from a gamma
distribution. Similarly, the user also defines the proportion of topological
rearrangements, each of which involves randomly removing a portion of the tree and
reattaching it to a random position on the remaining tree (Lewis, 1998). Finally,
recombination involves taking an offspring tree (which may or may not have been
mutated), removing a portion of that tree, and attaching it to a different parental tree,
which has been pruned to remove the corresponding leaves. Again, this occurs with a
frequency that is defined by the user.
 It is the recombination described above that sets genetic algorithms apart from
other heuristic approaches to ML, because it allows for the potential of two good portions
of two different trees being brought together (Lewis, 1998).
 In the first test of the genetic algorithm described above (implemented in a
program called GAML), a 55-taxon phylogeny was reconstructed 3 times, taking a total
of 42.4 hours of CPU time (Lewis, 1998). The final solution was different in each case,
with one of the 3 topologies corresponding to the best solution found by an
implementation of PAUP* (a program based on stepwise addition followed by extensive
branch swapping)(Swofford and Begle, 1993). However, PAUP* took 783.h to arrive at
this solution, demonstrating the significant increase in speed afforded by the genetic
algorithm.

The value of the Genetic Algorithm:
 While the speed of Lewis’ genetic algorithm is certainly impressive, the lack of
convergence on a single solution by three trials is somewhat disconcerting. However,
this result is not altogether surprising given the principles on which this method is based.
Like evolution, the GA depends on the combination of random change and selection to
produce an optimal solution. This is inherently appealing to the biologist, because we
embrace the power of selecting random changes over time, and because of the lack of
simplifying assumptions that will bias the outcome in a particular direction (Foster,
2001). However, as we know from biology, random selection does not always lead to the
“best” solution to a given problem (see the vertebrate eye). Similarly, it appears that
genetic algorithms will not always (or even often) arrive at the most likely solution to a
phylogenetic problem.

More recent investigations of this method have revealed that different trials with
the same data set gave populations of trees that varied significantly from each other
throughout the analysis, despite only small amounts of variation within each population
(Brauer et al., 2002). This once again suggests that different trials can explore very
different subsets of the total search space, and may not converge on a single solution. In
essence, this is a variation on the ‘hill climbing’ effect of greedy algorithms discussed
above. Genetic algorithms appear to do a better job of selecting a good hill to climb
(than, for instance, stepwise addition), but they are still susceptible to getting trapped in
local optima.

The variation between populations did, however, offer an intriguing way to
improve the performance of the GA. In one trial, mixing two populations after they had
been allowed to evolve (and approach a steady state) independently, offered a substantial
increase in the accuracy of the best solution found after only a small number of additional
generations (Bauer et al., 2002). This could offer a way of increasing the total search
space covered in a given trial, and decreasing the possibility of getting caught in a local
optimum.

Another attempt to improve the performance of genetic algorithms in
phylogenetic reconstruction has been presented by Lemmon and Milinkovitch (2002).
Their approach also involves the separate evolution of several distinct populations, but
instead of mixing these populations, information about the trees in each is shared between
them (referred to as MetaGA). For instance, if several populations converge on a
solution for one section of the tree, that section is henceforth left unmutated, based on the
assumption that this part of the solution is correct. By progressively restricting the
amount of each tree subjected to mutations and rearrangements, this algorithm offers a
significant increase in speed (Lemmon and Milinkovitch, 2002). While very efficient,
this technique intuitively appears more susceptible to local optima. The reason for this is
simply that even if a region of a tree topology has a very high likelihood score, there is no
guarantee that this topology will be consistent with that of the globally optimum tree.
Therefore, by holding high scoring regions constant, we remove an element of the
random selection that makes GA appealing, and add an element which is theoretically
similar to quartet puzzling methods (Strimmer and von Haeseler, 1996). Given the
mediocre performance reported for quartet puzzling, it seems unlikely that the metaGA
would perform better than the standard GA approach. However, the comparative
accuracy of these two methods has yet to be firmly established experimentally.

Final thoughts on GAs:

Are genetic algorithms a great new way to do phylogenetic reconstructions? The
answer is likely dependent on exactly what the researcher is looking for. Essentially,
every method’s utility is judged on just two factors: speed and accuracy. In terms of
speed, GAs perform extremely well. The first implementation of GA required 18-fold
less computing time than the same reconstruction using PAUP* (Lewis, 1998). This is
certainly not a trivial difference when it is translates to the difference between 2 days and
well over a month. Additionally, recent attempts to parallelize GAs promise to reduce
the time taken to do each analysis even further (Brauer et al., 2002).

In terms of accuracy, it appears that GAs perform well, but could be better. As
discussed above, GAs have been found to be susceptible to local optima, and will
randomly travel through very different search space on successive trials. Furthermore,
attempts to optimize the user-defined variables for this method revealed that changes
could have a dramatic effect on the resultant accuracy (Brauer et al., 2002). This
suggests two things: (1) work needs to be done to optimize these variables; and (2) these
methods appear susceptible to systematic error, since they can be biased significantly by
a change in the variables. However, ultimately the solutions provided by the GAs were
not far from those produced by other, more exhaustive methods, especially if the branch
lengths of the final tree are optimized (Lewis, 1998; Brauer et al., 2002).

 I believe that the most promising improvement that could be made to genetic
algorithms involves the mixing of independent populations mentioned above. Data from
trials of the GA indicate that even populations with a small number of individuals are
capable of evolving good trees (Brauer et al., 2002). Therefore, one could potentially
devise an algorithm that (for instance) started with four distinct populations of 5
individuals, let each population approach a steady state, then combine two pairs to make
two populations of 10 individuals. Once again, these mixed populations would be
allowed to evolve before combining them into one population of size 20. I believe that
such an algorithm could add the benefits of population mixing (something that clearly
occurs during biological evolution), without increasing the computational time too
dramatically (since the total number of individuals would stay constant). Furthermore,
one could imagine that such an algorithm would benefit from having the most dramatic
changes occur in small populations, and the fine-tuning occur in larger populations. This
could be an advantage because early in the evolution process, changes accumulate
rapidly, and there is a high amount of variability between individuals in a population,
suggesting that small numbers of individuals are sufficient. Later in the evolution
process, variation within a population becomes much smaller, making large populations
preferable at this stage.

Conclusions:
 In today’s age of rapid, genome scale sequencing, the average biologist can easily
find himself with the prospect of analyzing the phylogenetic relationships between a large
number of homologous sequences. It is therefore of great utility to devise methods that
perform such a task well, and in a reasonable amount of time. Maximum likelihood
approaches have been established as the gold standard for evaluating the quality of a tree,
but the computing time required to find the optimal tree can be prohibitive. While there
have long been methods that can make good predictions for large numbers of taxa in a
matter of weeks, this time frame is still long enough to restrict access to only those with
both expertise and fast computers that they are willing to dedicate to a particular job. In
an ideal world, any biologist would be able to construct a good phylogeny for his or her
favorite gene family, and be finished in a matter of hours (or perhaps overnight). I
believe that the implementation of maximum likelihood criteria using a genetic algorithm
combines the speed and accuracy required to approach this ideal.

References:

Brauer, M.J. et al., (2002). Genetic algorithms and parallel processing in maximum-
likelihood phylogeny inference. Molecular Biology and Evolution, 19: 1717-1726.

Felsenstein, J. (1978) Cases in which parsimony and compatibility methods will be
positively misleading. Systematic Zoology, 27: 401-410.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution, 17: 388-376.

Foster, J.A. (2001). Evolutionary Computation. Nature Reviews: Genetics, 2: 428-436.
Galtier, N., and Gouy (1995). Inferring phylogenies from DNA sequences of unequal
base compositions. PNAS 92: 11317-11321.

Gaut, B.S., and Lewis, P.O. (1995). Success of maximum likelihood phylogeny
inference in the four-taxon case. Molecular Biology and Evolution, 12: 152-162.

Goldman, N. and Yang, Z. (1994). A codon-based model of nucleotide substitution for
protein-coding DNA sequences. Molecular Biology and Evolution, 11: 725.

Hasegawa, M., Kishino, H., Yano, T. (1985) Dating of the human-spe plitting by a
molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 21: 160-174.

Hendy, M.D. and Penny, D. (1989). A framework for the quantitative study of
evolutionary trees. Systematic Zoology, 38: 297-309.

Hendy, M.D., and Penny, D. (1982). Branch and bound algorithms to determine
minimal evolutionary trees. Mathematical Biosciences, 59: 277-290.

Heulsenbeck, J.P. (1995). The robustness of two phylogenetic methods: Four-taxon
simulations reveal a slight superiority of maximum likelihood over neighbor joining.
Molecular Biology and Evolution, 12: 843-849.

Katoh, K. Kuma, K., Miyata, T. (2001). Genetic algorithm-based maximum-likelihood
analysis for molecular phylogeny. Journal of molecular evolution, 53: 477-484.

Kuhner, M.K., and Felsenstein, J. (1994). A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution,
11: 459-468.

Lemmon A.R., and Milinkovitch, M.C. (2002). The metapopulation genetic algorithm:
An efficient solution for the problem of large phylogeny estimation. PNAS, 99: 10516-
10521.

Lewis, P.O. (1998). A genetic algorithm for maximum-likelihood phylogeny inference
using nucleotide sequence data. Molecular Biology and Evolution, 15: 277-283.

Mount, D.W. (2001). Phylogenetic prediction. In Bioinformatics, chap. 6, pp. 237-280.
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Saitu, N. (1996). Reconstruction of gene trees from sequence data. Methods in
Enzymology, 266: 427-449.

Stimmer, K., and von Haeseler, A. (1996). Quartet puzzling: a quartet maximum-
likelihood method for reconstructing tree topologies. Molecular Biology and Evolution,
13: 964-969.

Swofford, D.L., Olsen, G.J., Waddell, P.J., and Hillis, D.M. (1996). Phylogenetic
Inference. In Molecular systematics, 2nd edition, chap. 5, pp. 407-514. Sinauer and
Associates, Sunderland, Massachusetts

