
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: 
Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alexander Chan 
5075504 

Biochemistry 218 
Final Project 



Chan 1 

An Analysis of Pairwise Sequence Alignment Algorithm Complexities 
 

Introduction 
 As databases of protein sequences and properties increase in size, it becomes more and more 
reliable to depend on previously classified proteins to determine the structure and function of a novel 
protein.  One method of determining homology between two proteins is through a pair-wise sequence 
alignment of their primary structures.  It has been found that two proteins that are homologous, such 
that they were evolutionarily derived from a common protein, tend to align well with a large number of 
identical or highly similar residues in similar positions along the sequences.  Provided a large database 
of protein sequences and their matching functions and structures, performing a sequence alignment 
between a sequence of a novel protein and the proteins in the database will find other proteins which 
are highly related, thus potentially revealing the function of the new protein. 

The challenge in performing sequence alignments has been the tradeoff between accuracy and 
efficiency.  Older algorithms like the Needleman-Wunsch algorithm and the Smith-Waterman 
algorithm tend to have very high computational complexities, however manage to find the optimal 
alignment between a pair of proteins.  Newer algorithms like FASTA and BLAST sacrifice some of 
this accuracy to make the alignments faster.  As the database of proteins grows larger, faster algorithms 
become more important to be able to quickly compare a given sequence to the entire database. 

In this paper, we shall look at five main algorithms: the older optimal alignment algorithms by 
Needleman-Wunsch and Smith-Waterman, and the newer, approximate alignment algorithms FASTA, 
BLAST, and Gapped BLAST.  We shall look at the algorithm itself and the computational and space 
complexity of each algorithm.  From this, we can compare the efficiencies of the various algorithms 
and see what sacrifices the algorithms make in exchange for speed.  We shall also analyze two 
modifications of the older dynamic programming algorithms: affine gap penalties, and the Hirschberg 
improvement. 
 
Needleman-Wunsch 
 The Needleman-Wunsch algorithm [1], published in 1970, provides a method of finding the 
optimal global alignment of two sequences by maximizing the number of amino acid matches and 
minimizing the number of gaps necessary to align the two sequences.  Because the Needleman-
Wunsch algorithm finds the optimal alignment of the entire sequence of both proteins, it is a global 
alignment technique, and cannot be used to find local regions of high similarity. 

In pairwise sequence alignment algorithms, a scoring function, F, must exist such that different 
scores can be assigned to different alignments of two proteins relative to the number of gaps and 
number of matches in the alignment.  Thus, the alignment with the largest score must be the optimal 
alignment.  In this scoring function, let m be the score for two residues matching, s is the penalty for 
mismatches, and g is the penalty for inserting a gap.  The Needleman-Wunsch algorithm realizes that 
the score of aligning the entire proteins is the same as the sum of the scores of two subsequences of the 
proteins, 

F(x1:M, y1:N)= F(x1:i, y1:j)+ F(xi+1:M, yj+1:N) 
where M is the length of sequence x, N is the length of sequence y, and 1<i<M and 1<j<N.  From this, 
we can see that the optimal score of two partial sequences is the sum of score of residue i in sequence x 
and residue j in sequence y, and the maximum score aligning the rest of the sequences.  There are three 
possibilities: 

 xi and yj are the same so F(i, j) = s(i, j) + F(i-1, j-1)  
*s(i, j)=m if xi=yj; s(i, j)=-s otherwise 

 xi aligns to a gap so F(i, j) = -d + F(i-1 j) 
 yi aligns to a gap so F(i, j) = -d + F(i, j-1) 



Chan 2 

By taking the maximum of these three, we can get the optimal score for alignment of the two 
subsequences, 

⎪
⎩

⎪
⎨

⎧

−
−

−−
+=

)1,(
),1(

)1,1(
max),(),(

jiF
jiF

jiF
jiscorejiF  

Starting at the c-terminus of the protein sequences, and working to the n-terminus, we can use 
scores of the subsequences it contains to find the optimal score of the subsequence plus the residue at 
(i,j).  Thus, the Needleman-Wunsch algorithm essentially creates a matrix in which the horizontal and 
vertical axes each correspond to one of the protein sequences.  Each amino acid in the protein sequence 
is assigned to a row or column starting at the N-terminus.  For every cell ( )ji,  where i is the row and j 
is the column, if the residue i is the same as residue j, the score m is entered into the matrix.  In this 
case, let m=1, and s=d=0.  In the example given in the original paper by Needleman and Wunsch, this 
matrix may look as follows: 

  Sequence x 
 A D C N S R Q C L C R P M 
A 1             
S     1         
C   1     1  1    
S     1         
N    1          
R      1     1   
C   1     1  1    
K              
C   1     1  1    
R      1     1   
D  1            

 
 
S 
e 
q 
u 
e 
n 
c 
e 
 
y 

P            1  
In this matrix, (1, 1) is the lower-right cell.  To fill in the rest of the matrix, starting at (1, 1), if 

we want to fill in cell (i, j) we add it’s initial score to the maximum score of the cells (i-1, j-1), (i-1, j), 
or (i, j-1).  Thus, row m is filled in, followed by row m-1, followed by row m-2, and so forth.  To find 
the optimal alignment, we perform a “traceback” by starting at upper-left cell and if xi = yj then we 
move to cell (i-1, j-1), otherwise, we move to the larger of (i-1, j) and (i, j-1).  We mark every cell we 
come across.  To find the final alignment, we draw a path from each of the marked residues in which xi 
= yj to the next residue where xi = yj and has a row and column strictly less than the first residue.  So 
the final alignment looks as follows: 

  Sequence x 
 A D C N S R Q C L C R P M 
A 8 7 7 6 6 5 4 4 3 3 2 1 0 
S 7 7 7 6 6 5 4 4 3 3 2 1 0 
C 7 7 7 6 6 5 4 4 3 3 2 1 0 
S 6 6 6 6 6 5 4 4 3 3 2 1 0 
N 6 6 6 6 5 5 4 4 3 3 2 1 0 
R 5 5 5 5 5 5 4 4 3 3 2 1 0 
C 4 4 4 4 4 4 4 4 3 3 2 1 0 
K 3 3 3 3 3 3 3 3 3 3 2 1 0 
C 3 3 3 3 3 3 3 3 3 3 2 1 0 
R 2 2 2 2 2 2 2 2 2 2 2 1 0 
D 2 2 1 1 1 1 1 1 1 1 1 1 0 

 
 
S 
e 
q 
u 
e 
n 
c 
e 
 
y 

P 1 1 1 1 1 1 1 1 1 1 1 1 0 



Chan 3 

 From this, we can see that when an arrow skips a row, it is a gap in sequence x, and when it 
skips a column, it is a gap in sequence y.  This particular example also has two optimal sequence 
alignments.  The final result looks as follows: 

ADC-NSRQCLCR-PM 
 | | | | | || | 

ASCSN-R-CKCRDP- 
 To analyze the time complexity of the Needleman-Wunsch algorithm, we can essentially 
analyze each individual part of the algorithm.  To initialize the matrix, we need to input the scores of 
the row 0 and column 0 with –j*d and –i*d respectively (in our example, these are both 0).  This has a 
time complexity of O(M+N). 
 The next step is filling in the matrix with all the scores, F(i,j).  For each cell of the matrix, three 
neighboring cells must be compared, which is a constant time operation.  Thus, to fill the entire matrix, 
the time complexity is the number of entries, or O(MN). 
 Finally the traceback requires a number of steps.  The first step is marking the cells according 
to the rules above.  We can move a maximum of N rows and M columns, and thus the complexity of 
this is O(M+N).  The second step is finding the final path which involves jumping from cells of 
matching residues.  Since this step can include a maximum of N cells (where we assume N>M), this 
step is O(N). 
 Thus, the overall time complexity of this algorithm is 

O(M+N)+O(MN)+O(M+N)+O(N)=O(MN) 
Since this algorithm fills a single matrix of size MN and stores at most N positions for the traceback, 
the total space complexity of this algorithm is O(MN)+O(N)=O(MN). 

It is important to note here that the Needleman-Wunsch algorithm supports different scores for 
exact residue matches, similar residues, and gaps.  A PAM or BLOSUM weight matrix can be used to 
weight residue matching scores.  These weighted scores can affect the final alignment of the two 
protein sequences and the biological relevance of the alignment, but will not affect the time or space 
complexity of the algorithm because the number of operations will not change.  This alignment is 
limited, however, because it can only align entire proteins.  A different algorithm was developed to 
create local alignments 
 
 
Smith-Waterman 
 The Smith-Waterman algorithm was published in 1981 [2] and is very similar to the 
Needleman-Wunsch algorithm.  Yet, the Smith-Waterman algorithm is different in that it is a local 
sequence alignment algorithm.  Instead of aligning the entire length of two protein sequences, this 
algorithm finds the region of highest similarity between two proteins.  This is potentially more 
biologically relevant due to the fact that the ends of proteins tend to be less highly conserved than the 
middle portions, leading to higher mutation, deletion, and insertion rates at the ends of the protein.  
The Smith-Waterman algorithm allows us to align proteins more accurately without having to align the 
ends of related protein which may be highly different. 
 The Smith-Waterman algorithm can be implemented by changing only a couple things in the 
Needleman-Wunsch algorithm.  The algorithm can be written using the pseudocode below. 
 
 
 
 
 
 
 



Chan 4 

Initialization: 
F(0,j) = 0 

 F(i,0)= 0 
 
Filling Matrix: 
 for each i,j = 0 to M,N { 
  F(i,j) = max(0, 
 F(i-1,j-1) + s, 
 F(i-1,j) – d, 
 F(i,j-1) – d,) } 
 
Traceback: 
 FOPT = max(F(i,j)) 
 traceback(FOPT) 

 
 Only two things were changed in the Needleman-Wunsch algorithm to obtain the Smith-
Waterman algorithm.  When filling the matrix, we do not let any of the matrix values become negative, 
and thus we consider 0 as potentially being the maximum value of the three other cases (where xi =yj, 
or there is a gap in x or a gap in y).  By not letting any of the values go below zero, we stop considering 
regions of high dissimilarity which have no good alignments.  This allows the algorithm to focus on 
only those regions of the protein which are similar.  The second change in the algorithm is in the 
traceback.  Instead of starting at the n-terminus of both sequences, we start at the cell with the highest 
score in the entire matrix.  This allows for the alignment of the similar subsequences of the proteins. 
 The complexity of the Smith-Waterman algorithm can also be computed.  The time complexity 
of the initialization is O(M+N) because we need to initialize row 0 and column 0.  In filling the matrix, 
we traverse each cell of the matrix and perform a constant number of operations in each cell, and thus 
the time complexity for this part is O(MN).  Thus far, the complexity of the Smith-Waterman algorithm 
is exactly the same as that for the Needleman-Wunsch algorithms.  However, in the traceback, the 
algorithm requires the maximum cell be found, and this must be done by traversing the entire matrix, 
making the time complexity for the traceback O(MN).  It is also possible to keep track of the largest 
cell during the matrix filling segment of the algorithm, although this will not change the overall 
complexity.  Thus the total time complexity of the Smith-Waterman algorithm is 

O(M+N)+ O(MN) + O(MN) = O(MN) 
which is identical to the complexity of the Needleman-Wunsch algorithm.  The overall running time of 
this algorithm is actually slightly slower than the Needleman-Wunsch algorithm however, because 
more comparisons must be made when comparing the scores to 0, and when finding the largest cell 
during the traceback. 

The space complexity of the Smith-Waterman algorithm is also unchanged from the 
Needleman-Wunsch algorithm.  This is due to the fact that the same matrix is used and the same 
amount of space is needed for the traceback.  Thus, there is no definite space or time advantage of one 
algorithm over the other.  However, the Smith-Waterman algorithm tends to model protein homology 
better because it ignores misalignments at the ends of the proteins which are often not highly 
conserved.  Thus, database searches are usually done with the Smith-Waterman algorithm over the 
Needleman-Wunsch algorithm which tends to model homology better in distantly related proteins.  
The Needleman-Wunsch algorithm will tend to be better for proteins which are closely related, with 
fewer mutations because the ends of the protein in closely related sequences will not be changed 
significantly. 
 
Affine Gap Penalty 
 In the Needleman-Wunsch and the Smith-Waterman algorithms, there existed a constant gap 
penalty, d, for a single missing or inserted residue.  Thus, to insert a gap of size l, the total penalty 



Chan 5 

would be d*l.  However, in biological systems, a deletion or insertion of a large number of residues 
may be significantly less rare than this, and thus, a different model of gap penalties must be used. 

Realistically, gaps of different sizes would all have different penalties, but using this model 
increases the complexity of either algorithm from O(MN) to O(M2N).  This is because when computing 
the score of each cell, instead of finding the maximum of three adjacent cells, we must find the number 
of cells to the right or down which also are included in the gap.  Thus, we must look at i+j+1 cells, 
which increases the time complexity to O(M2N). 

To get around this increase in complexity, we can use affine gap penalties in which the initial 
gap opening penalty is set at a constant value, d, and extending the gap by a single residue is set at a 
constant, lower value, e.  This linear gap penalty function is easier to deal with.  In this case, we must 
keep track of two things for each cell in the matrix.  We must keep track of the score of the aligned 
subsequences x1:i and y1:j plus the score of aligning xi and yj.  We can store these values in matrix F(i,j).  
We must also keep track of the score of the aligned subsequences x1:i and y1:j plus the score of inserting 
a gap at either xi or yj.  We can store these values in G(i,j).  To fill in each of the cells in both matrices, 
we apply the following rules, 

⎩
⎨
⎧

+−−
+−−

=
),()1,1(
),()1,1(

max),(
jiscorejiG
jiscorejiF

jiF   

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−
−−
−−
−−

=

ejiG
ejiG
djiF
djiF

jiG

)1,(
)1,(
)1,(
),1(

max),(  

 Here F(i,j) is the max score when xi and yj are aligned (either ending a gap at G(i-1,j-1), or 
continuing an alignment in F(i-1,j-1)).  G(i,j) is the max score when either starting a gap in F with a 
penalty of d or extending a gap in G with an extension penalty of e. 
 The initialization, in this case, is also O(M+N) because row 0 and column 0 must initialized to 
the linear gap penalty, d+(j-1)e or d+(i-1)e respectively.  In the iterative phase, we now have two 
matrices to fill, but each cell of both matrices still only requires a constant number of operations.  Each 
matrix has a time complexity of O(MN) yielding 2O(MN) = O(MN) complexity.  Finally, the traceback 
is still O(M+N) because it is unchanged.  Thus, the total time complexity is O(MN) which is the same 
as the Needleman-Wunsch and Smith-Waterman complexities. 
 The space complexity must take into account both matrices and the space needed for traceback 
on both matrices.  Since the space complexity of a single matrix is O(MN), the space complexity for 
two matrices is 2O(MN)=O(MN).  Thus, the space complexity is also unchanged.  However, the actual 
space used is two times the space used for Needleman-Wunsch and Smith-Waterman, and the running 
time is also about two times as long for the affine gap model.  Thus, we see that increasing biological 
accuracy involves a sacrifice in efficiency. 
 
Hirschberg Improvement 
 In 1975, Hirschberg published an improvement [3] to pairwise sequence alignment which 
allowed the space complexity to be lowered to O(N).  This linear space algorithm keeps the time 
complexity at O(MN) and thus is a significant improvement over the traditional Needleman-Wunsch 
and Smith-Waterman algorithms.  The Hirschberg algorithm is a recursive algorithm and divides the 
matrix into smaller parts solving each of the smaller problems separately. 
 Given two sequences x and y (assuming x is longer), the Hirschberg algorithm splits sequence y 
near the middle resulting in two subsequences ya and yb.  Then a pairwise sequence alignment is 
performed from the bottom-right of subsequence yb and from the upper-left of sequence ya.  Hirschberg 
realized that to fill in a single row of the matrix, only the row below it is needed.  Thus the algorithm 
fills in the matrix, yet only stores the row it is working on, and the row below it until it reaches the top 
of yb.  For ya, the algorithm stores the row above the row it is working on, and stops when it reaches 



Chan 6 

the bottom of ya.  Once the algorithm finishes for both ya and yb, it looks for the point where the 
optimal paths converge, and splits sequence x into two subsequences, xa and xb, at this point. 

 
 After splitting sequence x into xa and xb, the algorithm is run again on the upper-left submatrix 
and the lower-right submatrix.  The lower-left and upper-right do not need to be analyzed further 
because we know that when aligning sequences, the alignment must always be decreasing and thus will 
not be found in this sections.  The matices are split recursively until the entire optimal path is revealed. 

 
 The Hirschberg method only requires enough space to store the row it is working on, O(N), the 
previous row, O(N), and all the found optimal cells, O(M+N).  Assuming the longer sequence is length 
N, the space complexity of the Hirschberg algorithm is, 

O(N)+O(N)+O(M+N)=2O(N)+O(2N)=O(N) 
 Thus, we have reduced the space complexity from O(MN) to O(N).  The time complexity of 
this algorithm must take into account the recursive aspect of the method.  The first iteration requires a 

scanning of the two halves of the matrix and it thus ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅

2
12MNO .  The second iteration works on 

two matrices which are about a quarter of the size of the total matrix and thus the second iteration has a 

complexity of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛⋅

4
12MNO .  Adding up the complexities of the entire algorithm yields, 

( ) ( )MNOMNOMNO ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +++⋅ 2...

8
1

4
1

2
12  

 Therefore, the Hirschberg algorithm lowers the space complexity to a linear function of the 
longer sequence length, however does not significantly raise the time complexity; it roughly doubles 
the running time but keeps the complexity at O(MN). 
 

find optimal cells 
 

and split x 

y a
1 

y b
1 

xb xa xb1 xa1 xa2 

y a
2 

y a
1 

y a
2 

y b
2 

y b
1 

y b
2 

xb2 

sequence x 

se
qu

en
ce

 y
 

y a
 

y b
 

y a
 

y b
 

find optimal cells 
 

and split x 

xb xa 



Chan 7 

Heuristic Methods 
 Thus far, we have discussed optimal sequence alignment methods which find the highest 
scoring alignment for any pair of protein sequences.  However, these algorithms tend to be slow, and 
when searching an entire database, these methods are often too slow to perform a search in reasonable 
time.  Thus, heuristic, or approximate, algorithms like FASTA and BLAST were developed to speed 
up the process while attempting to keep as much sensitivity as possible. 
 
FASTA 
 The FASTA algorithm was developed in 1985 by Lipman and Pearson [4].  Unlike the 
Needlman-Wunsch and Smith-Waterman algorithms, FASTA approximates the optimal alignment by 
searching and matching k-tuples, or subsequences of length k.  The algorithm assumes that related 
proteins will have regions of identity, and by searching with k-tuples, the FASTA algorithm allows 
small regions of local identity to be found quickly.  For proteins, these k-tuples tend be of length two. 
 FASTA creates a hash table of all possible k-tuples and goes through the entire query protein of 
length N and inputs the location of all the k-tuples into the table.  Each k-tuple in the database sequence 
can be looked-up in the hash table, and any matches will allow the algorithm to mark the matching 
cells in the matrix.  This results in a matrix in which all points of local identity of length k are marked. 
 The FASTA algorithm then identifies the ten highest scoring diagonal runs by identifying each 
marked point on the matrix, and adding a positive score for every other marked cell along a diagonal, 
and subtracting a penalty for unmarked cells between marked cells along the diagonal.  These ten 
highest scoring segments are kept, and all other segments of local alignment are discarded.  The ten 
diagonals are scored once again using an amino acid weight matrix (PAM or BLOSUM matrix) and 
any diagonals with scores below a threshold are discarding again.  The highest scoring diagonal is 
termed init1.  Thus, we are left with ten or fewer regions in which the two proteins align with no gaps 
(although mismatches are allowed in the form of missing marked cells along the diagonal). 
 The algorithm then calculates the scores of joining every combination of diagonals, as long as 
the diagonals are downstream from one another.  To calculate the score of a joined series of diagonals, 
the individual scores of each of the diagonals are summed, and a constant joining penalty is subtracted 
each time two subsequences are joined.  The maximum of the joined alignments is termed initn and 
joined alignments which have a score below a threshold are discarded.  The initn scores are used to 
rank each of the alignments with sequences from the database. 
 The final step in creating the sequence alignment is to define a diagonal band of around 32 
residues wide around the init1 diagonal from the upper-left of the matrix to the lower-right.  The 
FASTA algorithm assumes that the optimal alignment will include or be near the init1 diagonal.  A 
dynamic programming algorithm is then performed in this band to find the final optimal alignment, 
and it essentially merges the regions of local alignment into a single alignment. 
 The FASTA algorithm is substantially faster than the Needleman-Wunsch or Smith-Waterman 
alignments and thus can be more easily used in database queries.  However, the time complexity of this 
algorithm does not seem to suggest this.  In building the hash table, each k-tuple of the query sequence 
needs to be scanned and inserted into the table.  Since there are N–k+1 k-tuples, this yields an O(N) 
complexity.  Next, every k-tuple in the database sequence must also be compared to the hash table, and 
since the lookup and marking of cells can be done in constant time, the time complexity depends on 
the length of the database sequence, O(M). 

Then the algorithm creates diagonals from marked cells, and thus the running time depends on 
the number of marked cells.  In the worst case, all cells could be marked yielding an O(MN) 
complexity.  However, this is rarely ever the case.  Assuming the probability of a k-tuple of amino 

acids exactly matching another k-tuple of amino acids to be k20
1  (which is not completely correct), 

and assuming the actual alignment takes around M+N cells, we have lowered the number of cells 



Chan 8 

considered from MN to k
MNNM
20

++  which is a significant decrease.  We then are left with ten or 

fewer diagonals after each of the scores have been computed. 
In the joining step, we must consider at most every combination of diagonals with other 

diagonals.  If all the diagonals are strictly decreasing, we can combine any combination of them, and 
the total number of combinations must be less than or equal to 1023... 1010310210110 =++++ CCCC .  
However, many diagonals cannot be combined with others because the start of one diagonal may not 
be to the lower-right of the other, not allowing them to be joined.  Nonetheless, the number of 
computations in the joining phase is bound by 1023 and is not dependent on sequence length. 

Finally, the dynamic programming algorithm is run on the band of cells 32 residues wide.  
Assuming the maximum diagonal of the matrix is NMNM +≈+ 22 , the total number of cells 
considered is about )(32 NM + .  Thus, in the worst case, the time complexity of FASTA is, 

( ) ( ) ( ) ( ) ( )( ) )(321023 MNONMOOMNOMONO =+++++  
However, this algorithm is O(MN) only because when creating the diagonals, in the worst case, MN 
cells must be analyzed.  But on average, very few cells of the total matrix are marked.  Thus, the 
average-case complexity would be about, 

( ) ( ) ( ) ( )( ) ⎟
⎠
⎞

⎜
⎝
⎛=+++⎟

⎠
⎞

⎜
⎝
⎛ ++++ kk

MNONMOOMNNMOMONO
20

321023
20

 

 Thus, the complexity of the FASTA algorithm depends on the size of the k-tuples, and the 
larger the k-tuples, the faster the algorithm.  The true complexity is difficult to determine because the 
speed at which the algorithm can align two sequences depends on total number marked cells and the 
total number of diagonals which is extremely variable.  For example, it is possible for the FASTA 
algorithm to produce no alignment even if the proteins are very similar.  If the proteins have k-1 exact 
matches in a row followed by a single mismatch, repeating the entire length of both proteins (meaning 
the proteins will be 75% identical), no k-tuples will ever match and thus no alignment can be produced. 
 The space complexity of this algorithm is also O(MN) like the Needleman-Wunsch and Smith-
Waterman because it uses a matrix.  However, it is possible that less space will be used because not all 
cells in the matrix are marked, and thus marked cells can be represented in a different, non-matrix, 
form. 
 Although the FASTA algorithm is faster than any of the previous algorithms, it is not 
guaranteed to find the optimal alignment between two proteins.  Because it uses k-tuples to speed 
things up, it can miss smaller areas of similarity and thus there is a possibility of misaligning two 
proteins.  Also, limiting the width of the area searched with dynamic programming can yield a sub-
optimal alignment if gaps are wider than the width of the band.  Thus, it is clear that there is a tradeoff 
here between speed and sensitivity.  Yet with even the speed of the FASTA algorithm is not enough to 
keep up with the exponentially growing protein databases, and thus a faster algorithm is necessary. 
 
BLAST 
 The BLAST (Basic Local Alignment Search Tool) algorithm was developed by Altschul et al. 
in 1990 [5] and similar to the FASTA algorithm, is also a heuristic pairwise sequence aligner.  
However, the basis of the BLAST algorithm is the use of words and High-scoring Segment Pairs 
(HSPs) instead of k-tuples. 
 BLAST begins by finding all words, or subpeptides of length w (typically 3), which exist in the 
protein sequence.  Using a substitution matrix, a list of other words, called a neighborhood, is created 
for each word found in the protein sequence; these words must be related to the original word and must 
have a substitution matrix score higher than T, else they are not considered.  For fast access to these 
data, the word positions are entered into a hash table.  The each word in the database sequence can be 



Chan 9 

compared to the hash table, and only those matches which are deemed statistically significant by a 
statistical method developed by Karlin and Altschul[6], will be kept.  This significantly reduces the 
number of hits which must be analyzed.  

Every match of a word in the database sequence with one of the neighbor words is called a 
High-scoring Sequence Pair (HSP) and these act as “seeds” to start a local sequence alignment.  The 
algorithm extends the alignment (without gaps) to the left and the right of the seed and calculates the 
score of the alignment at every residue with the substitution matrix.  The algorithm stops extending the 
alignment once the score decreases a quantity X from the maximum score found at any point in the 
alignment; this is possible because scores can easily be negative.  If the final score of the local 
alignment is below a threshold value, called S, the alignment is discarded.  Here, again, statistical 
significance is calculated and statistically insignificant alignments are discarded. 

To the determine the statistical significance of an HSP, the expected number of HSPs with a 
score larger than S is calculated via the formula, 

SKMNeE λ−=  

Here, K is parameter for the search space size.  λ can be calculated by solving, ∑∑
= =

r

i

r

j

s
ji

ijepp
1 1

λ  where pi 

and pj are the probabilities of each of the residues in the sequence and sij is the substitution score from 
the substitution matrix (PAM or BLOSUM). 

Once all the low scoring and statistically insignificant HSPs are discarded, the highest scoring 
HSP is kept.  This highest scoring segment created by extending the seeds is called the Maximal-
scoring Segment Pair (MSP).  Since the alignment contains no gaps, the MSP is used to build the final 
alignment by simply elongating this segment to the end of the protein. 
 The computational complexity of the BLAST algorithm can also be calculated.  First, in finding 
the neighborhood of words, we must consider all N–w+1words in the query sequence.  To find all the 
neighbors, we must compare each word with all other combinations of words and score them.  Since 
there are 20w possible words, we must compare a total of N(20w) strings.  Although this seems like a 
huge amount, this step in the alignment must only be performed once on the query sequence regardless 
of the number of database sequences which will be aligned against it.  Thus, the complexity of the pre-
alignment algorithm is, 

O(N)+O(N(20w))= O(N(20w)) 
 The actual alignment part of the algorithm which is performed for every database sequence has 
a very different complexity.  To find the seeds, each of the words in the database sequence must be 
compared to hash table created for the neighbors of the query sequence words, and thus we must 
perform M lookups.  The end product of the M lookups is on the order of N seeds total, because there 
are only N–w+1 words in the query.  Each of these seeds starts an alignment, and the maximum length 
of the alignment is the length of the query sequence, M, assuming M<N.  Since calculating λ must only 
be done once, and calculating the statistical significance of each HSP is a constant time operation, 
these have a complexity of O(1).  Thus, the total complexity of the BLAST algorithm is, 

O(M)+O(MN)+O(1)=O(MN) 
 This is the same time complexity as all of the other algorithms, however, using the statistically 
significant elimination of HSPs and words, BLAST significantly lowers the numbers of segments 
which need to be extended and thus make the algorithm run faster than all the previous algorithms.  
Since the expected number of HSPs is SKMNeE λ−= , it is clear that the actual number of segments 
which must be considered is small and depends on the threshold values S and T.  Thus, the higher S 
and T are, the faster the algorithm runs. 
 The space complexity of both of these algorithms is different than any of the previous 
algorithms.  We must first take into consideration the hash table.  The table contains 20w rows, one for 
every possible word of length w.  The rows contain the locations for each of the words, and the total 



Chan 10 

number of positions is on the order of N.  Thus, there should on the order of N seeds which can each 
lead to a local alignment of a maximum of length M.  The total space complexity is, 

O(20w)+O(N)+O(MN)=O(20w+MN) 
Thus, the space complexity is slightly higher than the other algorithms, however the actual 

space used may not be significantly larger than the dynamic programming algorithms.  This is because 
many of the local alignments will be discarded because they do not meet the threshold, and also 
because the alignments which do meet the threshold will significantly shorter than length M. 

However, BLAST only produces ungapped alignments and is not the most biologically relevant 
algorithm for protein sequences which may have insertions or deletions.  Thus, a modification to 
BLAST, called Gapped BLAST was introduced.  Gapped BLAST [7] uses a “two-hit” approach in 
which a word can be followed by a second word which is within a certain gap threshold.  These 
matches will then essentially be extended using a dynamic programming algorithm in all directions 
until the score falls below a certain percentage threshold of the highest score computed. 

Since the same words and hash table are used in this algorithm, the pre-alignment complexity is 
unchanged.  The two hit approach also does not significantly increase the complexity because the 
database sequence only needs to be scanned a small, constant distance to the left and right of already 
found words to find a second match.  Thus the complexity of finding seeds is still O(MN).  Finally, the 
dynamic programming portion of the algorithm is O(MN).  Thus the total complexity of the algorithm 
is, 

O(M)+O(MN)+O(MN)=O(MN) 
This improvement does not change the overall computational complexity of the algorithm, 

however, it does make the algorithm slower.  Yet Gapped BLAST creates more biologically relevant 
alignments than the ungapped BLAST algorithm; insertions and deletions are common in protein 
evolution. 

From this analysis, it is clear that BLAST is significantly faster than the older, slower 
algorithms, yet BLAST does not always give the optimal alignment.  It is possible for blast to miss 
segments of similarity smaller than the word size, and ungapped BLAST often produces alignments 
which are not biologically relevant.  Gapped BLAST can also produce suboptimal alignments because 
when it performs the dynamic programming at the end, the best alignment may lie outside of the 
limited band.  Thus, it is clear that a tradeoff exists between the sensitivity of an algorithm and the 
speed at which it works. 
 
Conclusion 
 It is interesting to note that all of the algorithms essentially had the same computational 
complexity of O(MN), except BLAST which had a pre-alignment complexity of O(20w).  Yet despite 
this, each of the algorithms had very different running times, with BLAST being the fastest and the 
dynamic programming algorithms being the slowest.  The space complexities of all the algorithms was 
also essentially identical, around O(MN) space.  It is also clear that BLAST and FASTA had to make 
sacrifices in specificity by considering longer subsequences, k-tuples and words, to be able to achieve 
higher speeds.  Thus, a tradeoff exists between speed and sensitivity.  However, the optimal alignment 
is not necessarily the best biological alignment, and thus the sacrifice of accuracy in exchange for 
speed may not be as harmful as it may seem. 
 Modeling biological relevance is a difficult task and also involves tradeoffs as seen in the affine 
gap algorithm presented here.  To be able to model these gap properties correctly, a slightly more 
complex, more time consuming algorithm was necessary.  Also, the Gapped BLAST modification to 
BLAST was also more complex than the original algorithm and required more computations and 
space.  Thus it is clear that in pairwise sequence alignment, we must come to a compromise to be able 
to efficiently align sequences in a biologically relevant manner in a reasonable amount of time. 
 



Chan 11 

References 
 

1. Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for 
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453. 

 
2. Smith, T. F. and Waterman, M. (1981). Identification of common molecular subsequences. 

J. Mol. Biol. 147, 195-197. 
 

3. Hirschberg, D.S. (1975). A Linear Space Algorith for Computing Maximal Common 
Subsequences. Comm. ACM. 18(6), 341-343. 

 
4. Lipman, D.J. and Pearson, W.R. (1985). Rapid and Sensitive Protein Simlarity Searches. 

Science 227, 1435-1441. 
 

5. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990). A Basic Local 
Alignment Search Tool. J. Mol. Biol., 215, 403-410. 

 
6. Karlin, S. and Altschul, S. F. (1990). Applications and statistics for multiple high-scoring 

segments in molecular sequences. Proc. Nat. Acad. Sci. 87, 2264-2268. 
 

7. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, 
D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res., 25(17), 3389-3402. 


