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Abstract 

Motif identification is a crucial method for detecting significant regions of 

proteins and for classifying newly sequenced proteins.  EMOTIF-MAKER and MASIA 

are two tools that utilize creative and novel methods to computationally find and model 

motifs.  In this paper, I describe these tools and compare selected aspects of their 

approaches to discovering and modeling protein motifs. 

 

Introduction 

The term "protein motif" refers to a highly conserved sequence pattern within a 

set of related proteins.  Motifs often have functional or structural significance, which is 

presumably the reason why these regions have been preferentially preserved in evolution.  

Hence, motifs can be very useful for locating important areas of proteins, such as active 

sites or particular types of folds.  Moreover, because motifs are conserved within 

families, they can be very useful for classifying new proteins. [2] 

In the past, motifs have been located and modeled by hand [1], but this process 

can be prone to human error. Moreover, hand-curation becomes increasingly difficult as 

protein databases mushroom in size.  For these reasons, the field of motif detection is 

relying more and more on computational techniques.  Many researchers have created 

web-based tools for use this area of research. I've chosen to examine and compare two of 

these tools, EMOTIF-MAKER and MASIA. 

 

EMOTIF-MAKER 

The EMOTIF-MAKER tool, developed by Nevill-Manning and Wu in Stanford's 

Brutlag lab, uses a modified regular expression scheme to represent motifs.  It 

exhaustively generates all motifs that fit the requirements of its scheme.   It returns the 



results on a graph that maps specificity vs. coverage, at which point the user can choose 

an appropriate motif from this graph for further experimentation. 

In the EMOTIF-MAKER tool, motifs are modeled using a customized form of 

regular expression.  Every position in the regular expression has a corresponding 

substitution group of residues that are allowed to appear at that position.  This group 

could contain all of the amino acids, some subset of them, or even just a single residue.  

The creators of EMOTIF-MAKER wanted 

their substitution groups to appropriately 

model the variability of amino acids observed 

in nature.  To achieve this goal, they examined 

position-specific amino acid diversity within 

protein families in the BLOCKS and HSSP 

databases, and they came up with twenty 

highly conserved groups of amino acids (shown in Figure 1).  Many of these groups have 

obvious chemical significance, such as the [FYW] group of aromatic amino acids. [5] 

EMOTIF-MAKER restricts its regular expressions to use only these twenty groups, a 

"wild-card " group that contains all of the residues, and groups for each individual amino 

acid. 

One can string EMOTIF-MAKER's substitution groups together in numerous 

ways to create motifs that match a given multiple alignment.  The most intuitive motif, 

perhaps, is the one in which each position contains the smallest group that can represent 

all of the amino acids observed at that position in the multiple alignment.  However, if 

one of the proteins has a sequencing error or has been misclassified into the training set, 

then the resulting motif may be forced to be much less specific than it should be in order 

to accommodate for the erroneous sequence.  In addition, the training set might contain 

several subfamilies that could potentially be described by very specific motifs when taken 

individually, but that require a much more general (and perhaps less useful) motif when 

they are all grouped together.  Consequently, the aforementioned "intuitive" motif 

frequently might not be the most valuable one, depending on the particular application. 

To address this concern, EMOTIF-MAKER doesn't require that its motif models 

describe all of the sequences in a training set; in fact, it only requires that they cover 30% 

 

Figure 1: Hierarchy of EMOTIF's allowable 
substitution groups (From Nevill-Manning et 
al., [3]) 



of the sequences.  (The user can modify this parameter, if desired.)  This allows the tool 

to work around errors in the 

training set and to generate 

highly-specific motifs for 

subfamilies.  It generates all 

possible motifs that satisfy 

this coverage requirement. 

EMOTIF-MAKER 

outputs its results visually 

as points on a coverage-vs-

specificity graph (see 

Figure 2).  The user can 

select a motif from this 

graph with the right 

balance of coverage and 

specificity for his or her 

particular purpose.  For example, if a researcher wanted to search a database for all 

globin-like proteins, he or she would be well advised to use a globin motif with high 

coverage.  On the other hand, if the researcher wanted to find members of a small protein 

family to a high degree of certainty, he or she would be wiser to use a highly specific 

motif. 

 

MASIA 

MASIA is a multi-purpose tool for analyzing multiple sequence alignments. [9] In 

this paper, I'm focusing only on its macro for detecting Physical-Chemical Property 

Motifs (PCPM). [8] This macro, maintained by Venkatarajan in the Braun lab at UTMB, 

detects motifs by measuring the conservation of certain physical and chemical properties 

at each position in the alignment.  The tool defines motifs as regions in which certain 

property descriptors are well conserved. 

Venkatarajan and Braun used a technique known as multidimensional scaling to 

make it more straightforward to quantify physical-chemical variation between amino 

Figure 2:  EMOTIF-Maker's graphical output of its results.  (From 
a search at http://fold.stanford.edu/emotif/emotif-maker.html) 



acids. [7] They started by assembling a list of 237 quantitative physical-chemical 

properties whose values had been measured for all twenty naturally occurring amino 

acids.  After normalizing the amino acids' values for these properties, they constructed a 

237-dimensional space with each axis corresponding to one of the physical-chemical 

properties, and they examined the distribution of amino acids in this space.  It turned out 

that the distribution could be accurately described with only five principal vectors.  In 

fact, when the space was compressed to use just five dimensions based on these vectors, 

the Euclidian distances between amino acids maintained a 99% correlation coefficient 

with the original distances in the 237-dimensional property space.  Venkatarajan and 

Braun named their five components E1 through E5, and they use these vectors as a basis 

for defining similarity between amino acids.  The resulting similarity index seems to be 

reliable; it correlates well with established amino acid substitution matrices such as 

PAM250 and BLOSUM62.  Moreover, several of the five component vectors seem to 

correspond to particular physical properties.  For example, amino acid distribution along 

E1 is largely determined by 

hydrophobicity (as shown in Figure 3).  

However, not all of the components 

easily reduce to individual properties, 

nor should they. Rather, they generally 

represent linear combinations of many 

different properties. [7] 

In MASIA, a motif is defined 

as a series of positions that show a 

minimum level of conservation in at 

least one of the five descriptors, E1 to E5.  

MASIA motifs must be longer than a minimum length L, and they are allowed to have 

internal regions with insignificant levels of conservation up to a length of G.  L and G are 

user-definable parameters.  MASIA uses the default values of 4 and 2, respectively, based 

on empirical results. [8] 

Figure 3: Graph of the amino acids' values 
along MASIA's E1 vector vs. their 
hydrophobicity (From Venkatarajan et al., [5])



MASIA's motifs are stored as sequence profiles.  To construct a profile, MASIA 

iterates across every position in a multiple alignment, storing for each position the 

average values, standard deviations, and relative entropies for all five E-components.  

The resulting motif profile can be used to probabilistically search databases for matching 

sequences. [8] 

 

Discussion 

EMOTIF-MAKER and MASIA's PCPM macro are designed to solve the same 

overall problem: given a multiple sequence alignment, they attempt to discover motifs.  

However, the tools' methods are quite different.  I'll examine the differences in two main 

areas.  First, I consider their techniques for modeling conservation on the scale of 

individual amino acid positions.  Second, I compare their strategies for generating 

complete motifs and sets of motifs. 

 

Modeling amino acid conservation 

Before one can model a motif, one must first decide on a way to model degrees of 

amino acid conservation for a particular position. EMOTIF-MAKER and MASIA take 

very different approaches to this problem: EMOTIF-MAKER uses predefined 

substitution groups, whereas MASIA measures conservation more quantitatively by using 

statistical methods in multidimensional property-space.  Both approaches have 

comparative advantages and disadvantages. 

While EMOTIF-MAKER's fixed substitution groups have evidence 

demonstrating their empirical relevance, [5] there is something to be said for a more 

versatile approach whose results are more specific to the observed data, as in MASIA.  

On the one hand, this sort of technique often runs the risk of overfitting the training data; 

that is, if one tries too hard to exactly model a training set, it's possible to create a motif 

that matches the observed data to such a high degree that it loses its biological 

significance. However, MASIA avoids this overfitting problem by rooting its models in 

statistically conserved physical and chemical properties, and this helps to keep it from 

losing touch with the biological significance.  By measuring values for its five principal 

vectors, MASIA very precisely models the degree of conservation at an amino acid 



position.  When compared to this scheme, EMOTIF-MAKER's fixed substitution groups 

seem to be a somewhat more limited method for modeling position-specific diversity. 

Of course, MASIA isn't perfect at modeling amino acid conservation.  In 

particular, it is susceptible to biases in the training sequences.  It assigns the same weight 

to all sequences when it computes averages to construct a profile, and this could lead to 

undesirable results for training data that contain subsets of especially highly related 

sequences.  For example, a hypothetical training set that contains four closely related 

human sequences and one distant bacterial sequence would probably have many positions 

at which the human sequences all agreed with each other but differed from the bacterial 

sequence. As a result, the average values incorporated into the motif profile would be 

skewed in favor of the human sequences because these sequences would "outvote" the 

bacterial sequence.  One simple way in which MASIA could correct for this problem 

would be to first measure sequence-wide similarity in the training set and then to 

proportionally down-weight similar sequences when computing average values. [4] 

In contrast, EMOTIF-MAKER deals with sequence bias in a very capable way 

that follows directly from its use of substitution groups.  EMOTIF-MAKER always 

generates all possible motifs that cover at least 30% of the training set based on its 

substitution groups, regardless of the relative prevalence of particular variations.  As a 

result, EMOTIF-MAKER is resistant to problems resulting from overrepresentation of 

particular variations.  Indeed, rather than having problems with sequence bias, EMOTIF-

MAKER capitalizes on it: if a highly-related subfamily represents at least 30% of the data 

set, then EMOTIF-MAKER will generate an additional very specific motif for this 

subfamily, in addition to the other motifs that describe the dataset as a whole.  Overall, 

EMOTIF-MAKER deals with sequence bias much better than MASIA. 

 

Generating entire motifs 

Beyond their differences in modeling amino acid conservation, EMOTIF-

MAKER and MASIA have very diverse functionality at the whole-motif level, as well.  

Principal among their differences at this level is the fact that EMOTIF-MAKER 

generates many motifs, while MASIA generates only one for each sufficiently similar 

region. 



EMOTIF-MAKER is more flexible for most datasets because of its ability to 

generate many motifs, most of which selectively ignore some of the sequences from the 

data set.  As mentioned before, this improves the tool's robustness against errors in the 

data, and it also gives EMOTIF-MAKER the power to automatically detect subfamilies 

within data sets.  In contrast, MASIA only returns a single "average" motif for each 

adequately conserved region.  As a result, its motifs are more susceptible to errors in the 

data because they necessarily incorporate information from all of the sequences in the 

multiple alignment. 

Nonetheless, there are cases in which the motifs returned by MASIA could be 

more useful than those generated by EMOTIF-MAKER.  In particular, if one wanted to 

search for members of a diverse family with relatively low sequence conservation, it 

might be easier to use a single overarching property-based set of MASIA motifs.  

MASIA's motifs preserve the physical and chemical information about important sites 

while remaining detached from the actual sequences, and this can be especially useful if 

the sequences have relatively little in common. [8] In comparison, EMOTIF-MAKER 

might not be as easily able pick up on a motif in such a diverse sets of sequences, 

especially if the diversity doesn't directly map to the tool's fixed substitution groups. 

 

Conclusion 

EMOTIF-MAKER and MASIA stand out in different ways.  The main 

comparative benefits of EMOTIF-MAKER are its resistance to errors in the data and the 

sheer number of motifs that it produces, at various levels of specificity.  MASIA, on the 

other hand, is intriguing because it is rooted in a comprehensive and quantitative 

description of amino acids' physical and chemical properties, and this helps it detect a 

broad spectrum of biochemically significant patterns.  Future work in this field might 

look into the feasibility of combining aspects of these two programs. 

 

Availability 

EMOTIF-MAKER is available on the web at http://motif.stanford.edu/emotif/, 

and MASIA is available at http://www.scsb.utmb.edu/masia/masia.html  
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