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Introduction 

The problem of pattern matching is encountered in numerous arenas, from 

internet searches to library catalogs.  Pattern matching plays a special role in 

bioinformatics due to the wealth of information that can be gained from finding 

patterns in genomic sequences.  However, the challenge to provide efficient and 

correct pattern matching continues to grow as the volume of genomic information 

swells.  The following is an examination of a subset of the larger problem of 

pattern matching: exact and inexact pattern matching.  Within these areas, we 

will concentrate on the more fundamental algorithms, those that give rise to other 

algorithms, and give a representative sample of the types of benefits offered and 

challenges encountered by current methods.  In addition to descriptions of the 

algorithms, the methods will also be reviewed in the context of current technology 

and processor capabilities in an effort to identify possible means of improvement. 

 
Exact Pattern Matching 

 
Exact pattern matching involves finding all occurrences of a pattern P in a string 

S, where S is longer than P.  The simplest form of pattern matching, exact 

pattern matching is still widely used in a variety of text searches from internet 

search engines to word processing.  While higher processor speeds and other 

advances have reduced search response to negligible times, exact matching still 

remains a useful area of study and development for a number of reasons.  First, 

as genomic information continues to grow, sequence searches will become 

increasingly taxing on search engines.  Searching for patterns in sequences will 

invariably be more difficult than performing common internet searches because 

of fewer unique constraints (i.e. four nucleotides, or twenty amino acids), and the 

absence of spaces denoting words/patterns.  Also, many of the searches 

performed on the internet are accelerated because many of the answers people 

seek are pre-computed, while those for genetic sequences are not.  Secondly, 

the exact pattern match still remains an integral part of faster matching 
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algorithms, typically comprising the final part of a search.  Lastly, an 

understanding of the classical methods of exact pattern matching lends itself to 

the development of new algorithms. 

 

Naïve Method 

The simplest method of exact matching is the naïve method.  The premise is 

simple: the first letter of pattern P is lined up with the first letter of S, and the 

letters of the aligned region are compared until all of P is found to match the 

corresponding S region or a mismatched letter is found, in which case P is 

shifted one letter to the right and the process is repeated.   
Example: CATMOUSE 

   MOUSE 

    MOUSE 

     MOUSE 

        MOUSE 

While complete, the speed disadvantages to this method are clear.  By moving 

one character at a time, the worst-case time required to compare the pattern to 

the entire sequence would be proportional to the length of P multiplied by the 

length of S.   

 

By performing an initial preprocessing of the text, the speed of the main search 

can be increased appreciably (Gusfield, 1996).  For example, to find the pattern 

“MOUSE” in the following string: 
MOPMOUSEMOUNTAINMONKEY 

one could first perform a search locating the M’s in the string, and then only 

compare “MOUSE” to those locations. 
Example: MOPMOUSEMOUNTAINMONKEY 

   MOUSE 

      MOUSE 

       MOUSE 

      MOUSE 
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Additionally, one could search for the prefix “MOU” during the preprocessing, and 

save additional time. 
 Example: MOPMOUSEMOUNTAINMONKEY 

      MOUSE 

       MOUSE  

In a case of no matches found during preprocessing, time is saved because no 

further searching is needed, and thus the time saved is proportional to the 

relative sizes of the prefix and the original pattern.  However, as might be likely in 

searches of DNA sequences, if the prefix is found often or if the useful size of the 

prefix is large compared to the pattern, the cumulative time of the preprocessing 

and main search may show only a negligible time savings. 

 

Boyer-Moore 

The Boyer-Moore algorithm (Boyer, Moore, 1977) provides marked improvement 

over the naïve method through the implementation of three key ideas.  First, 

although the pattern P and string S are aligned on the left, the algorithm scans 

for matches from right to left.  Secondly, when a mismatch is found between 

letter p in P and letter s in S, P is moved to the right so that the rightmost 

occurrence of s in P is aligned with s; if s does not occur in P, P is shifted one 

space to the right of s (“Bad Character Shift Rule”). 
Example: CATDOGMOUSECAT 

  MOUSE    1. O-E mismatch 

MOUSE 2. O in MOUSE shifted to O in DOG, O-E 

mismatch 

 MOUSE  3. O in MOUSE shifted to O in MOUSE 

Lastly, the algorithm implements a third rule which is improved upon by Gusfield 

(1997).  The modified rule (“Strong Good Suffix Rule”) states that if the suffix Q of 

pattern P matches a substring R in S,  when a mismatch is found, P is shifted to 

the right so that Q’ is matched up with R, where Q’ is defined as the rightmost 

occurrence of Q in P with a different letter to the left.  If Q’ does not exist then the 

left end of P is shifted past the left end of R until another match is found, or until 

P is shifted past R. 
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Example: DOGMOUSECATBATBAT 

CATBATBAT 1. Suffix AT matches, but C-B 

mismatch 

CATBATBAT 2. Shift pattern P until suffix AT with 

different left letter is found (i.e. CAT) 

The combination of the three characteristics of the Boyer-Moore algorithm makes 

the method simple yet powerful.  Immediately, searching from right to left with the 

Bad Character Shift Rule, the potential to skip over a greater number of non-

matching substrings is realized.  However, without the Strong Good Suffix Rule, 

the algorithm would be vulnerable to short alphabets.  For instance, in the 

previous example, the pattern would have only been shifted three spaces if the 

algorithm had not realized that positions 4-6 of P were the same as 7-9.  

Theoretically, Boyer-Moore would at worst run in linear time (i.e. proportional to 

the sum of the lengths of P and S), and would normally run sublinearly.  

However, the cumulative length of genomic information precludes the use of 

Boyer-Moore as the sole search method. 
 

Knuth-Morris-Pratt 

The Knuth-Morris-Pratt algorithm seeks to improve the length of the pattern shift 

by utilizing information already gathered from searching a string (Knuth, Morris, 

Pratt, 1977).  To accomplish this goal, the algorithm preprocesses the pattern 

and creates a finite state machine (or automaton).  Typically, the information is 

portrayed in tabular form with “KNP Next” values assigned to each character in 

the pattern based on the number of spaces the machine moves the pattern if a 

mismatch is found.  The algorithm then uses the finite state machine to process 

the string. 
 

 

 

 

 

 



 5 

 

Example: KMP Next Table  
  G  C  A  G  A  G  A  G - 

  -1 0  0 -1  1 -1  1 -1 1 (KMP Next value) 

  
GCATCGCAGAGAG 

GCAGAGAG 1.  Mismatch at position 4, shift by 3 

(number of matches) minus -1(KMP Next 

value of ‘G’ at position 4 of P) = 4  

GCAGAGAG 2.  Mismatch at position 1, shift 0 - (-1) = 1 

 GCAGAGAG 3. Pattern match, shift 8-1 = 7 to continue 

  (Courtesy: Lecroq, 2004) 

Properly implemented, the Knuth-Morris-Pratt algorithm has the potential to look 

at each letter of the string only once.  However, with the table in the previous 

example, one can see that some letters will be searched twice, namely those in 

the middle of mismatches, which have KMP Next values that shift the first letter 

of the pattern to the mismatched position. 
Example: KMP Next Table  
  G  C  A  G  A  G  A  G - 

  -1 0  0 -1  1 -1  1 -1 1 (KMP Next value) 

  
GTATACAGT 

GCAGAGAG 1.  Mismatch at position 2, shift by 1-0=1  

 GCAGAGAG  2.  Mismatch at position 1 

As seen in the example above, after the mismatch at position 2, the pattern is 

only shifted over one character.  As a result, the letter ‘T’ in position 2 of the 

string is run through the algorithm twice.  Even though the character had already 

been looked at, the algorithm shifts the pattern into another mismatch at position 

1.  It may be possible to circumvent this issue by building another level into the 

KMP Next Table.  The additional level would contain information pertaining to the 

character on the string which caused the mismatch. 
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Shift-And 

The Shift-And (or Shift-Or) method is a semi-numerical algorithm developed by 

Yates and Gonnet (1992) based on the use of numerical comparisons rather than 

character comparison.  For a given string and pattern, a two-dimensional array is 

created to store match/mismatch information for each character in the pattern 

compared to each character in the string.  A match would then be scored as a 1, 

a mismatch, 0.  For example if P = CAT and S = CART, an array M would have 

values of 1 in M(1,1), M(2,2), and M(3,4) and value of 0 in all others.   

 

 C A R T 

C 1 0 0 0 

A 0 1 0 0 

T 0 0 0 1 

 

The Shift-And method has an advantage over character comparison because bit 

comparisons are performed much more quickly by processors.  However, 

because the size of the array is the length of P multiplied by the length of S +1, 

the method is only useful for relatively small strings.  Highest efficiency would be 

achieved if the number of characters in the string is less than the number of bits 

in a computer word (Gusfield, 1997).  Thus, if a typical computer word is 32 bits, 

a processor would be able to accommodate a string of 31 letters in a single 

operation, eliminating the need to repeatedly loop through the string.  However, 

while 31 letters would be sufficient for an English word, even several times that 

capacity would only accommodate a small fraction of genomic sequences.  

Nevertheless, as a final processing step, Shift-And clearly has benefits in both 

exact and inexact matching. 

 

It may also be useful to extend the idea of increasing the amount of string 

information stored in a computer word.  A letter or punctuation mark is generally 

assigned 8 bits, which can accommodate 256 different combinations.  For typing, 

these 256 combinations are necessary, given the 26 letters, capital letters, 
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numbers, punctuation marks, etc.  However, for protein sequences, only 20 

different combinations are needed, and as a result only 5 bits would need to be 

assigned to a single letter/amino acid in a protein sequence.  For a DNA 

sequence, only 2 bits would need to be assigned to a single nucleotide.  By not 

treating the sequence characters as keyboard letters, 1 ½-  and 4- fold increases 

in information per computer word would be achieved for protein and DNA 

sequences respectively.  However, in theory this acceleration would occur, but in 

practice, because processors tend to work with powers of 2, nucleotides would 

indeed be treated as 2 bits, but the 5 bits of the amino acid may end up being 

treated like an 8-bit character. 

 

Karp-Rabin 

The Karp-Rabin Random Fingerprint algorithm is a semi-numerical method which 

utilizes a hashing function to compare whether a substring of equal length to the 

pattern is a match (Karp, Rabin, 1987).  The hashing function preprocesses the 

string by moving one letter at a time, assigning a value to substrings the length of 

the pattern.  The function computes the hash value by performing an arithmetic 

calculation on the pre-assigned values of each letter in the substring.  In the 

original Karp-Rabin algorithm, the values of each letter were randomly assigned 

prime numbers, which increased the probability that a match found was actually 

a match.  Additionally, each step of the arithmetic operations performed ends in 

the modulus of a small prime integer.  As a result, the values involved are small 

and easier to manage.  After the hash function preprocessing, the algorithm 

performs the same hash function on the pattern, and then performs a left-to-right 

comparison of substring hash values.  An example with arbitrary hash values 

follows.   
Example: String = CABBATDAT, Pattern = BAT (Hash Value = 277) 
  CABATTDAT 

  CAB, Hash = 151 

   ABA, Hash = 103 

    BAT = 277 (Match Found) 

     ATT, Hash = 129 
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A good hash function would only yield the same value if the compared strings 

were indeed a match.  For the Karp-Rabin algorithm, with a pattern of 250 

characters and a string of 4000 characters, the probability of producing a false 

positive is at most p=0.001 (Gusfield, 1997).  An efficient function would also 

increase calculation speed by recognizing that with each move only one number 

is added and one number dropped. 

 

Because the Karp-Rabin looks at each character in the string twice (once as it 

enters the hash function and once as it exits), longer string searches are lengthy, 

especially during the preprocessing stage.  Also, when a hash value match is 

found, the substring needs to confirmed, possibly adding appreciable time for 

long patterns which are repeated frequently in the string.  Instead of randomly 

assigning prime numbers, because the alphabet size of proteins is fixed, it may 

be useful to assign numbers that are related to the frequency of the amino acid in 

nature.  In vertebrates, for example, tryptophan accounts for only 1.3% of amino 

acids (Beals, 2004).  Tryptophan could be assigned a relatively high value, then 

based on the values of the other amino acids, a large substring could be 

summed during the preprocessing step and it could be quickly determined 

whether tryptophan was present.  In this way, depending on the amino acid 

composition of the pattern, the problem could be more quickly constrained as 

larger chunks of data could be dismissed, and areas with potential matching 

more quickly identified.  The larger values assigned would not affect the hashing 

function because the modulus operation would return a small integer.  However, 

the larger values may affect the probability of false positives. 

 

Suffix Trees 

The idea of the suffix tree was originally introduced by Weiner (1973), and was 

modified to create a more space-efficient algorithm by McCreight (1976).  More 

recently, Ukkonen (1995) developed an “on-line” method, which requires much 

less memory than the other algorithms, but is equally fast.  The main premise of 

the suffix tree is that a string can be broken down into as many suffixes as there 
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are characters, and this information can be stored in tree form.  In addition, 

because the words are stacked alphabetically, suffixes with multiple locations 

and common prefixes can be readily located. 

 Example (Implicit suffix tree): 
  BANANA 

  - A -->|--> NA -->| 

         |          |--> NA 

         |--> NANA  

  - B --> ANANA 

  - N -->|--> A 

         |--> ANA 

One of the primary benefits of a suffix tree is that after the tree is created, one 

can move between locations of a string quickly, regardless of actual distance in 

the string.  However, this characteristic may also lead to slower processing in 

larger trees if the suffixes of interest are located in different areas of memory.  In 

addition, longer trees require a much greater amount of space than the normal 

sequence.  If every suffix is included in the tree, and there are no duplicate 

suffixes, for a string of length M, (M/2)*(M+1) characters are required.  Suffix 

trees are also able to provide quick insight into repeated patterns and longest 

shared substrings.  However, the construction of the tree does not benefit from 

dual processors because each letter must be addressed individually and in order.  

So suffix trees of appreciable length need to be stored and maintained to be 

useful, as building large trees on demand is inefficient. 

 

Inexact Pattern Matching 
 

While exact matching provides a fundamental basis for string searching in 

sequences, the nature of biological sequences requires that differences in 

sequences be accommodated and utilized.  Similarities in the text of sequences 

often indicate similarities in function, structure, or homology.  The challenge in 

inexact, or approximate, matching is allowing enough edits (insertions, deletions, 

and substitutions) to detect relevant patterns, but not so many as to make the 
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comparison irrelevant.  With inexact matching, the concern shifts to alignment of 

sequences based on their similarity.  The nature of the problems of sequence 

alignment and the numerous routes one could take to address them yield a 

variety of categories of alignment methods, ranging from pairs of sequences to 

large groups.  However, of interest to this paper are the methods which are 

concerned with two-sequence comparisons.  Many of the fundamental methods 

for this task can be found in the area of dynamic programming (Chan, 2004).  In 

short, dynamic programming is the optimization of a solution through the solving 

of a series of problems within the larger problem, instead of stopping to 

recompute.  Dynamic programming is well suited for use in biological sequences 

because it works only when the problem has an optimal substructure, i.e. the 

smaller problems can be solved in succession to solve the main problem.  Due to 

the higher complexity of inexact algorithms, the exact implementation of these 

methods will not be given.  Instead, more focus will be placed on the 

characteristics of each algorithm and the associated benefits and challenges. 

  

Hirschberg 

Later refined by Myers and Miller (1988), Hirschberg’s (1975) algorithm utilizes a 

“divide and conquer” method to reduce the space needed for sequence 

alignments.  In the algorithm, if sequences A and B are to be aligned, the method 

begins by cutting A into two substrings, A1 and A2.  Next, an optimal place for B 

to be separated is located to form B1 and B2.  The alignment is then derived 

recursively for the corresponding pairs of substrings.  The weakness in this 

algorithm is the substantial increase in time from first analyzing the sequences to 

find the separation point and then solving the multiple sub-problems for the four 

substrings.  However, because the solution is derived recursively, the amount of 

space needed is proportional to the length of the longer sequence, not a matrix 

between the two sequences.  Depending on the length of the sequence, the 

trade-off may be worth it.  If one has enough time/patience, the computer will 

eventually align even the longest of sequences using this method.  Not the case 

for a computer which runs out of memory.  In addition, time and space 
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calculations treat processor speed and memory independently.  However, 

memory clearly has a noticeable effect on processor speed, and as such a 

savings in space may indeed translate into a decrease in time for larger 

sequences.  Additionally, the “divide-and-conquer” aspect of the algorithm allows 

the programming of shipping subproblems to multiple processors to do the work 

in parallel. 

 

k-difference 

To increase speed of algorithms, upper limits can be placed on the number of 

allowable mismatches in the alignment.  This method, generally referred to as k-

difference or k-mismatch, reduces processing time by limiting the use of dynamic 

programming to a portion of the matrix proportional to the size of the larger 

sequence multiplied by the number of mismatches, k (Gusfield ,1997).  The idea 

of k-difference can be applied to both global alignment as well as inexact 

matching, with inexact matching posing the added problem of gaps.  Of particular 

concern are end gaps, which one would not want to factor into an edit distance 

calculation.  The major benefit in the k-difference approach is the limiting of the 

distance the alignment can take away from the diagonal recursive path.  Also, the 

user can decide whether to choose a smaller k and shorter processing time, or 

larger k for more iterations.  A challenge with k-difference algorithms is identifying 

the proper size k.  The efficiency of many of these algorithms are dependent on 

assumptions of certain-sized or bounded k (Chang, Lampe, 1993).  The size or 

even presence of a limit on k may be dependent on the field of interest.  Those 

studying more distantly related sequences would possibly benefit from a large k 

or no k.  However, those interested in mutations and disease might be more 

inclined to keep k small in order to detect even the smallest differences. 

 

Baeza-Yates and Perleberg 

In an effort to further speed up k-difference calculations, Baeza-Yates and 

Perleberg (1992) developed a method of partitioning the pattern into equal length 

regions, such that there are k+1 regions.  A keyword tree (common prefix) is built 
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with the regions and then an algorithm is run to find the locations in the string 

where patterns in those regions occur exactly.  Finally, an approximate matching 

algorithm can be run to locate approximate substrings.  As a result, because 

exact matches have previously been located and there is a limit on the number of 

edits which can be introduced, the sequence is aligned quickly.  The idea has 

also been modified a number of times, including addition of the Shift-And method 

(Wu, Manber, 1992), and partitioning of the string, not the pattern (Chang, 

Lawler, 1994).  The methods all result in an expected sublinear run time, 

proportional to the length of the string.  However, the trade off is a higher 

occurrence of errors.  Gusfield (1997) notes two more problems with these 

methods.  First, the algorithms can often exclude regions which should be 

approximately matched.  Secondly, in regions that do not end up matched, the 

algorithm still starts into dynamic programming or other resource intensive 

calculations.  It follows that these algorithms could be more selective when 

handling the regions initially, and may benefit from intermediate calculations prior 

to longer calculations. 

 

Four-Russians Speedup 

Erroneously named for a paper by four authors (Arlazarov, et al, 1970), of which 

only one was Russian, the Four-Russians speedup has been used as an 

enhancement to many dynamic programming algorithms.  The method uses “t-

blocks” to describe a block of t x t area in a dynamic programming table (i.e., a 

table with the two sequences lined up on either axis).  It then proceeds to 

compute by blocks, not individual cells, treating each block as one entity.  By 

overlapping the blocks by one row/column and recognizing that neighboring cells 

can differ by at most one, the values for the overlapping areas can be calculated 

by the string and pattern data.  The result is an increase in speed by a factor of t.  

For very large strings, the Four-Russians Speedup can make an appreciable 

difference.  For smaller strings, it is typically not implemented in its fullest detail 

(Gusfield ,1997).  The method also seems difficult to implement for blocks which 

are not of fixed length.  So, one may need to choose an appropriate block length, 
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or determine a pattern to overlap the blocks.  These steps may or may not be 

justified in smaller searches, as the parameters of a t-block are not immediately 

evident and may take time to discern. 

 

Conclusion 
 

With continuous advances in processor speed and growth of genomic 

information, the area of pattern matching remains a vital field.  Newer methods 

will undoubtedly make use of technology for both the implementation and 

discovery of new algorithms.  However, an understanding of fundamental pattern 

matching methods and challenges remains a necessity for those developing 

novel algorithms. 
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