

Analysis of Fundamental Exact and Inexact
Pattern Matching Algorithms

Jonathan Lee

ID# 05354211

BIOC 218

June 4, 2004

1

Introduction

The problem of pattern matching is encountered in numerous arenas, from

internet searches to library catalogs. Pattern matching plays a special role in

bioinformatics due to the wealth of information that can be gained from finding

patterns in genomic sequences. However, the challenge to provide efficient and

correct pattern matching continues to grow as the volume of genomic information

swells. The following is an examination of a subset of the larger problem of

pattern matching: exact and inexact pattern matching. Within these areas, we

will concentrate on the more fundamental algorithms, those that give rise to other

algorithms, and give a representative sample of the types of benefits offered and

challenges encountered by current methods. In addition to descriptions of the

algorithms, the methods will also be reviewed in the context of current technology

and processor capabilities in an effort to identify possible means of improvement.

Exact Pattern Matching

Exact pattern matching involves finding all occurrences of a pattern P in a string

S, where S is longer than P. The simplest form of pattern matching, exact

pattern matching is still widely used in a variety of text searches from internet

search engines to word processing. While higher processor speeds and other

advances have reduced search response to negligible times, exact matching still

remains a useful area of study and development for a number of reasons. First,

as genomic information continues to grow, sequence searches will become

increasingly taxing on search engines. Searching for patterns in sequences will

invariably be more difficult than performing common internet searches because

of fewer unique constraints (i.e. four nucleotides, or twenty amino acids), and the

absence of spaces denoting words/patterns. Also, many of the searches

performed on the internet are accelerated because many of the answers people

seek are pre-computed, while those for genetic sequences are not. Secondly,

the exact pattern match still remains an integral part of faster matching

 2

algorithms, typically comprising the final part of a search. Lastly, an

understanding of the classical methods of exact pattern matching lends itself to

the development of new algorithms.

Naïve Method

The simplest method of exact matching is the naïve method. The premise is

simple: the first letter of pattern P is lined up with the first letter of S, and the

letters of the aligned region are compared until all of P is found to match the

corresponding S region or a mismatched letter is found, in which case P is

shifted one letter to the right and the process is repeated.
Example: CATMOUSE

 MOUSE

 MOUSE

 MOUSE

 MOUSE

While complete, the speed disadvantages to this method are clear. By moving

one character at a time, the worst-case time required to compare the pattern to

the entire sequence would be proportional to the length of P multiplied by the

length of S.

By performing an initial preprocessing of the text, the speed of the main search

can be increased appreciably (Gusfield, 1996). For example, to find the pattern

“MOUSE” in the following string:
MOPMOUSEMOUNTAINMONKEY

one could first perform a search locating the M’s in the string, and then only

compare “MOUSE” to those locations.
Example: MOPMOUSEMOUNTAINMONKEY

 MOUSE

 MOUSE

 MOUSE

 MOUSE

 3

Additionally, one could search for the prefix “MOU” during the preprocessing, and

save additional time.
 Example: MOPMOUSEMOUNTAINMONKEY

 MOUSE

 MOUSE

In a case of no matches found during preprocessing, time is saved because no

further searching is needed, and thus the time saved is proportional to the

relative sizes of the prefix and the original pattern. However, as might be likely in

searches of DNA sequences, if the prefix is found often or if the useful size of the

prefix is large compared to the pattern, the cumulative time of the preprocessing

and main search may show only a negligible time savings.

Boyer-Moore

The Boyer-Moore algorithm (Boyer, Moore, 1977) provides marked improvement

over the naïve method through the implementation of three key ideas. First,

although the pattern P and string S are aligned on the left, the algorithm scans

for matches from right to left. Secondly, when a mismatch is found between

letter p in P and letter s in S, P is moved to the right so that the rightmost

occurrence of s in P is aligned with s; if s does not occur in P, P is shifted one

space to the right of s (“Bad Character Shift Rule”).
Example: CATDOGMOUSECAT

 MOUSE 1. O-E mismatch

MOUSE 2. O in MOUSE shifted to O in DOG, O-E

mismatch

 MOUSE 3. O in MOUSE shifted to O in MOUSE

Lastly, the algorithm implements a third rule which is improved upon by Gusfield

(1997). The modified rule (“Strong Good Suffix Rule”) states that if the suffix Q of

pattern P matches a substring R in S, when a mismatch is found, P is shifted to

the right so that Q’ is matched up with R, where Q’ is defined as the rightmost

occurrence of Q in P with a different letter to the left. If Q’ does not exist then the

left end of P is shifted past the left end of R until another match is found, or until

P is shifted past R.

 4

Example: DOGMOUSECATBATBAT

CATBATBAT 1. Suffix AT matches, but C-B

mismatch

CATBATBAT 2. Shift pattern P until suffix AT with

different left letter is found (i.e. CAT)

The combination of the three characteristics of the Boyer-Moore algorithm makes

the method simple yet powerful. Immediately, searching from right to left with the

Bad Character Shift Rule, the potential to skip over a greater number of non-

matching substrings is realized. However, without the Strong Good Suffix Rule,

the algorithm would be vulnerable to short alphabets. For instance, in the

previous example, the pattern would have only been shifted three spaces if the

algorithm had not realized that positions 4-6 of P were the same as 7-9.

Theoretically, Boyer-Moore would at worst run in linear time (i.e. proportional to

the sum of the lengths of P and S), and would normally run sublinearly.

However, the cumulative length of genomic information precludes the use of

Boyer-Moore as the sole search method.

Knuth-Morris-Pratt

The Knuth-Morris-Pratt algorithm seeks to improve the length of the pattern shift

by utilizing information already gathered from searching a string (Knuth, Morris,

Pratt, 1977). To accomplish this goal, the algorithm preprocesses the pattern

and creates a finite state machine (or automaton). Typically, the information is

portrayed in tabular form with “KNP Next” values assigned to each character in

the pattern based on the number of spaces the machine moves the pattern if a

mismatch is found. The algorithm then uses the finite state machine to process

the string.

 5

Example: KMP Next Table
 G C A G A G A G -

 -1 0 0 -1 1 -1 1 -1 1 (KMP Next value)

GCATCGCAGAGAG

GCAGAGAG 1. Mismatch at position 4, shift by 3

(number of matches) minus -1(KMP Next

value of ‘G’ at position 4 of P) = 4

GCAGAGAG 2. Mismatch at position 1, shift 0 - (-1) = 1

 GCAGAGAG 3. Pattern match, shift 8-1 = 7 to continue

 (Courtesy: Lecroq, 2004)

Properly implemented, the Knuth-Morris-Pratt algorithm has the potential to look

at each letter of the string only once. However, with the table in the previous

example, one can see that some letters will be searched twice, namely those in

the middle of mismatches, which have KMP Next values that shift the first letter

of the pattern to the mismatched position.
Example: KMP Next Table
 G C A G A G A G -

 -1 0 0 -1 1 -1 1 -1 1 (KMP Next value)

GTATACAGT

GCAGAGAG 1. Mismatch at position 2, shift by 1-0=1

 GCAGAGAG 2. Mismatch at position 1

As seen in the example above, after the mismatch at position 2, the pattern is

only shifted over one character. As a result, the letter ‘T’ in position 2 of the

string is run through the algorithm twice. Even though the character had already

been looked at, the algorithm shifts the pattern into another mismatch at position

1. It may be possible to circumvent this issue by building another level into the

KMP Next Table. The additional level would contain information pertaining to the

character on the string which caused the mismatch.

 6

Shift-And

The Shift-And (or Shift-Or) method is a semi-numerical algorithm developed by

Yates and Gonnet (1992) based on the use of numerical comparisons rather than

character comparison. For a given string and pattern, a two-dimensional array is

created to store match/mismatch information for each character in the pattern

compared to each character in the string. A match would then be scored as a 1,

a mismatch, 0. For example if P = CAT and S = CART, an array M would have

values of 1 in M(1,1), M(2,2), and M(3,4) and value of 0 in all others.

 C A R T

C 1 0 0 0

A 0 1 0 0

T 0 0 0 1

The Shift-And method has an advantage over character comparison because bit

comparisons are performed much more quickly by processors. However,

because the size of the array is the length of P multiplied by the length of S +1,

the method is only useful for relatively small strings. Highest efficiency would be

achieved if the number of characters in the string is less than the number of bits

in a computer word (Gusfield, 1997). Thus, if a typical computer word is 32 bits,

a processor would be able to accommodate a string of 31 letters in a single

operation, eliminating the need to repeatedly loop through the string. However,

while 31 letters would be sufficient for an English word, even several times that

capacity would only accommodate a small fraction of genomic sequences.

Nevertheless, as a final processing step, Shift-And clearly has benefits in both

exact and inexact matching.

It may also be useful to extend the idea of increasing the amount of string

information stored in a computer word. A letter or punctuation mark is generally

assigned 8 bits, which can accommodate 256 different combinations. For typing,

these 256 combinations are necessary, given the 26 letters, capital letters,

 7

numbers, punctuation marks, etc. However, for protein sequences, only 20

different combinations are needed, and as a result only 5 bits would need to be

assigned to a single letter/amino acid in a protein sequence. For a DNA

sequence, only 2 bits would need to be assigned to a single nucleotide. By not

treating the sequence characters as keyboard letters, 1 ½- and 4- fold increases

in information per computer word would be achieved for protein and DNA

sequences respectively. However, in theory this acceleration would occur, but in

practice, because processors tend to work with powers of 2, nucleotides would

indeed be treated as 2 bits, but the 5 bits of the amino acid may end up being

treated like an 8-bit character.

Karp-Rabin

The Karp-Rabin Random Fingerprint algorithm is a semi-numerical method which

utilizes a hashing function to compare whether a substring of equal length to the

pattern is a match (Karp, Rabin, 1987). The hashing function preprocesses the

string by moving one letter at a time, assigning a value to substrings the length of

the pattern. The function computes the hash value by performing an arithmetic

calculation on the pre-assigned values of each letter in the substring. In the

original Karp-Rabin algorithm, the values of each letter were randomly assigned

prime numbers, which increased the probability that a match found was actually

a match. Additionally, each step of the arithmetic operations performed ends in

the modulus of a small prime integer. As a result, the values involved are small

and easier to manage. After the hash function preprocessing, the algorithm

performs the same hash function on the pattern, and then performs a left-to-right

comparison of substring hash values. An example with arbitrary hash values

follows.
Example: String = CABBATDAT, Pattern = BAT (Hash Value = 277)
 CABATTDAT

 CAB, Hash = 151

 ABA, Hash = 103

 BAT = 277 (Match Found)

 ATT, Hash = 129

 8

A good hash function would only yield the same value if the compared strings

were indeed a match. For the Karp-Rabin algorithm, with a pattern of 250

characters and a string of 4000 characters, the probability of producing a false

positive is at most p=0.001 (Gusfield, 1997). An efficient function would also

increase calculation speed by recognizing that with each move only one number

is added and one number dropped.

Because the Karp-Rabin looks at each character in the string twice (once as it

enters the hash function and once as it exits), longer string searches are lengthy,

especially during the preprocessing stage. Also, when a hash value match is

found, the substring needs to confirmed, possibly adding appreciable time for

long patterns which are repeated frequently in the string. Instead of randomly

assigning prime numbers, because the alphabet size of proteins is fixed, it may

be useful to assign numbers that are related to the frequency of the amino acid in

nature. In vertebrates, for example, tryptophan accounts for only 1.3% of amino

acids (Beals, 2004). Tryptophan could be assigned a relatively high value, then

based on the values of the other amino acids, a large substring could be

summed during the preprocessing step and it could be quickly determined

whether tryptophan was present. In this way, depending on the amino acid

composition of the pattern, the problem could be more quickly constrained as

larger chunks of data could be dismissed, and areas with potential matching

more quickly identified. The larger values assigned would not affect the hashing

function because the modulus operation would return a small integer. However,

the larger values may affect the probability of false positives.

Suffix Trees

The idea of the suffix tree was originally introduced by Weiner (1973), and was

modified to create a more space-efficient algorithm by McCreight (1976). More

recently, Ukkonen (1995) developed an “on-line” method, which requires much

less memory than the other algorithms, but is equally fast. The main premise of

the suffix tree is that a string can be broken down into as many suffixes as there

 9

are characters, and this information can be stored in tree form. In addition,

because the words are stacked alphabetically, suffixes with multiple locations

and common prefixes can be readily located.

 Example (Implicit suffix tree):
 BANANA

 - A -->|--> NA -->|

 | |--> NA

 |--> NANA

 - B --> ANANA

 - N -->|--> A

 |--> ANA

One of the primary benefits of a suffix tree is that after the tree is created, one

can move between locations of a string quickly, regardless of actual distance in

the string. However, this characteristic may also lead to slower processing in

larger trees if the suffixes of interest are located in different areas of memory. In

addition, longer trees require a much greater amount of space than the normal

sequence. If every suffix is included in the tree, and there are no duplicate

suffixes, for a string of length M, (M/2)*(M+1) characters are required. Suffix

trees are also able to provide quick insight into repeated patterns and longest

shared substrings. However, the construction of the tree does not benefit from

dual processors because each letter must be addressed individually and in order.

So suffix trees of appreciable length need to be stored and maintained to be

useful, as building large trees on demand is inefficient.

Inexact Pattern Matching

While exact matching provides a fundamental basis for string searching in

sequences, the nature of biological sequences requires that differences in

sequences be accommodated and utilized. Similarities in the text of sequences

often indicate similarities in function, structure, or homology. The challenge in

inexact, or approximate, matching is allowing enough edits (insertions, deletions,

and substitutions) to detect relevant patterns, but not so many as to make the

 10

comparison irrelevant. With inexact matching, the concern shifts to alignment of

sequences based on their similarity. The nature of the problems of sequence

alignment and the numerous routes one could take to address them yield a

variety of categories of alignment methods, ranging from pairs of sequences to

large groups. However, of interest to this paper are the methods which are

concerned with two-sequence comparisons. Many of the fundamental methods

for this task can be found in the area of dynamic programming (Chan, 2004). In

short, dynamic programming is the optimization of a solution through the solving

of a series of problems within the larger problem, instead of stopping to

recompute. Dynamic programming is well suited for use in biological sequences

because it works only when the problem has an optimal substructure, i.e. the

smaller problems can be solved in succession to solve the main problem. Due to

the higher complexity of inexact algorithms, the exact implementation of these

methods will not be given. Instead, more focus will be placed on the

characteristics of each algorithm and the associated benefits and challenges.

Hirschberg

Later refined by Myers and Miller (1988), Hirschberg’s (1975) algorithm utilizes a

“divide and conquer” method to reduce the space needed for sequence

alignments. In the algorithm, if sequences A and B are to be aligned, the method

begins by cutting A into two substrings, A1 and A2. Next, an optimal place for B

to be separated is located to form B1 and B2. The alignment is then derived

recursively for the corresponding pairs of substrings. The weakness in this

algorithm is the substantial increase in time from first analyzing the sequences to

find the separation point and then solving the multiple sub-problems for the four

substrings. However, because the solution is derived recursively, the amount of

space needed is proportional to the length of the longer sequence, not a matrix

between the two sequences. Depending on the length of the sequence, the

trade-off may be worth it. If one has enough time/patience, the computer will

eventually align even the longest of sequences using this method. Not the case

for a computer which runs out of memory. In addition, time and space

 11

calculations treat processor speed and memory independently. However,

memory clearly has a noticeable effect on processor speed, and as such a

savings in space may indeed translate into a decrease in time for larger

sequences. Additionally, the “divide-and-conquer” aspect of the algorithm allows

the programming of shipping subproblems to multiple processors to do the work

in parallel.

k-difference

To increase speed of algorithms, upper limits can be placed on the number of

allowable mismatches in the alignment. This method, generally referred to as k-

difference or k-mismatch, reduces processing time by limiting the use of dynamic

programming to a portion of the matrix proportional to the size of the larger

sequence multiplied by the number of mismatches, k (Gusfield ,1997). The idea

of k-difference can be applied to both global alignment as well as inexact

matching, with inexact matching posing the added problem of gaps. Of particular

concern are end gaps, which one would not want to factor into an edit distance

calculation. The major benefit in the k-difference approach is the limiting of the

distance the alignment can take away from the diagonal recursive path. Also, the

user can decide whether to choose a smaller k and shorter processing time, or

larger k for more iterations. A challenge with k-difference algorithms is identifying

the proper size k. The efficiency of many of these algorithms are dependent on

assumptions of certain-sized or bounded k (Chang, Lampe, 1993). The size or

even presence of a limit on k may be dependent on the field of interest. Those

studying more distantly related sequences would possibly benefit from a large k

or no k. However, those interested in mutations and disease might be more

inclined to keep k small in order to detect even the smallest differences.

Baeza-Yates and Perleberg

In an effort to further speed up k-difference calculations, Baeza-Yates and

Perleberg (1992) developed a method of partitioning the pattern into equal length

regions, such that there are k+1 regions. A keyword tree (common prefix) is built

 12

with the regions and then an algorithm is run to find the locations in the string

where patterns in those regions occur exactly. Finally, an approximate matching

algorithm can be run to locate approximate substrings. As a result, because

exact matches have previously been located and there is a limit on the number of

edits which can be introduced, the sequence is aligned quickly. The idea has

also been modified a number of times, including addition of the Shift-And method

(Wu, Manber, 1992), and partitioning of the string, not the pattern (Chang,

Lawler, 1994). The methods all result in an expected sublinear run time,

proportional to the length of the string. However, the trade off is a higher

occurrence of errors. Gusfield (1997) notes two more problems with these

methods. First, the algorithms can often exclude regions which should be

approximately matched. Secondly, in regions that do not end up matched, the

algorithm still starts into dynamic programming or other resource intensive

calculations. It follows that these algorithms could be more selective when

handling the regions initially, and may benefit from intermediate calculations prior

to longer calculations.

Four-Russians Speedup

Erroneously named for a paper by four authors (Arlazarov, et al, 1970), of which

only one was Russian, the Four-Russians speedup has been used as an

enhancement to many dynamic programming algorithms. The method uses “t-

blocks” to describe a block of t x t area in a dynamic programming table (i.e., a

table with the two sequences lined up on either axis). It then proceeds to

compute by blocks, not individual cells, treating each block as one entity. By

overlapping the blocks by one row/column and recognizing that neighboring cells

can differ by at most one, the values for the overlapping areas can be calculated

by the string and pattern data. The result is an increase in speed by a factor of t.

For very large strings, the Four-Russians Speedup can make an appreciable

difference. For smaller strings, it is typically not implemented in its fullest detail

(Gusfield ,1997). The method also seems difficult to implement for blocks which

are not of fixed length. So, one may need to choose an appropriate block length,

 13

or determine a pattern to overlap the blocks. These steps may or may not be

justified in smaller searches, as the parameters of a t-block are not immediately

evident and may take time to discern.

Conclusion

With continuous advances in processor speed and growth of genomic

information, the area of pattern matching remains a vital field. Newer methods

will undoubtedly make use of technology for both the implementation and

discovery of new algorithms. However, an understanding of fundamental pattern

matching methods and challenges remains a necessity for those developing

novel algorithms.

References

Arlazarov V.L., Dinic E.A., Kronrod M.A., and Faradzev I.A. On economic construction
of the transitive closure of a directed graph. Dokl. Acad. Nauk SSSR, 194:487-88, 1970.

Baeza-Yates R. and Gonnet G. A new approach to text searching. Comm. ACM,
35:74-82, 1992.

Beals M. and Gross L. Amino Acid Frequency. The Institute for Environmental
Modeling, June 2004
<http://www.tiem.utk.edu/~gross/bioed/webmodules/aminoacid.htm>.

Boyer R.S. and Moore J.S. A fast string searching algorithm. Comm. ACM, 20:762-72,
1977.

Chan S. Wikipedia, the free encyclopedia, June 2004
<http://en.wikipedia.org/wiki/Dynamic_programming>.

Chang W.I. and Lampe J. Theoretical and empirical comparisons of appromate string
matching algorithms. Proc 3rd Symp. On Combinatorial Pattern Matching. Springer
LNCS 644, p175-184, 1992

Chang W.I. and Lawler E.L. Sublinear expected time approximate string matching and
biological applications. Algorithmica, 12:327-344, 1994.

Lecroq T. and Christian M. Exact String Matching Algorithms. Laboratoire d'Informatique
de Rouen, June 2004
<http://www-igm.univ-mlv.fr/~lecroq/string/examples/exp8.html>.

 14

Gusfield D. Algorithms on strings, trees, and sequences: computer science and
computational biology, 1997.

Gusfield D. Simple uniform preprocessing for linear-time string matching. Technical
Report CSE-96-5, UC Davis, Dept. Computer Science, 1996.

Hirschberg D. S. A linear space algorithm for computing maximal common
subsequences. Comm. A.C.M. 18(6) p341-343, 1975.

Karp R.M. and Rabin M.O. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev. 31(2):249-260, 1987.

Knuth D.E., Morris (Jr) J.H., and Pratt V.R., Fast pattern matching in strings, SIAM
Journal on Computing 6(1):323-350, 1977.

McCreight E. M. A Space-Economical Suffix Tree Construction Algorithm. Jrnl. of
Algorithms, 23(2) pp262-272, 1976.

Myers E.W. and Miller W. Optimal alignments in linear space, CABIOS 4(1). 11-17,
1988.

Ukkonen E. Constructing Suffix Trees On-Line in Linear Time. In Algorithms, Software,
Architecture, J.v.Leeuwen (ed), vol#1 of Information Processing 92, Proc. IFIP 12th
World Computer Congress, Madrid, Spain, Elsevier Sci. Publ., pp484-492, 1992.

Weiner P. Linear Pattern Matching Algorithms. Proc. 14th IEEE Annual Symp. on
Switching and Automata Theory, pp1-11, 1973.

Wu S. and Manber U. Fast text searching allowing errors. Comm. ACM, 35:83-91, 1992.

