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Introduction and Purpose 

Posttranslational modification of proteins generates dynamic mechanisms by 

which proteins can switch from one state to another.  Such modifications are integral to 

the modulation of various cellular functions, from directing cellular localization to 

regulating protein activity.  Perhaps the most prevalent of these modifications is the 

phosphorylation and dephosphorylation of a substrate by kinases and phosphatases, 

respectively. 

Phosphorylation is an essential method through which various signaling pathways 

operate.  The addition or removal of a phosphate group from an amino acid side chain 

may cause conformational changes throughout the protein structure which affect its 

function or localization.  The presence of a phosphate group often modulates that 

protein's interaction with other proteins upstream or downstream of it on a certain 

pathway, such as the binding of phosphorylated receptors by proteins with SH2 domains 

(reviewed by Pawson, 2004). 

Given the prevalence of phosphorylation as a regulatory mechanism in cellular 

functions, there exists a need to predict whether certain proteins are susceptible to this 

posttranslational modification.  When searching through an amino acid sequence for 



potential phosphorylation sites, the only certainty is that the phosphorylated residue must 

be a serine, threonine, or tyrosine.  These three amino acids have the capacity to bind 

phosphates because they all contain a hydroxyl group in their side chains which are 

deprotonated at physiological pH, such that the oxyanion can act as a nucleophile to 

attack a phosphate from ATP.  However, not all serines (S), threonines (T), and tyrosines 

(Y) are susceptible to phosphorylation. 

The likelihood of a given S/T/Y residue to be phosphorylated is defined by other 

sequences in the protein.  Residues close to the S/T/Y in question may define this 

context, such that certain acidic or basic side chains are preferentially placed next to the 

phosphorylated residue in order to facilitate the phosphorylation reaction.  In addition, 

this context may be affected by sequences or motifs in the protein which are far away 

from the putatively altered residue.  There are two possible explanations for how residues 

far away in sequence space from the putative site can dictate phosphorylation.  One 

possibility is that these residues, though far away in sequence space, may be close to the 

putative site in tertiary structure of the protein, such that it assists in coordinating the 

docking of a kinase to the protein.  A second, more general possibility is that the presence 

(or absence) of certain residues at a particular position of a protein can dictate indirect 

allosteric effects which promote phosphorylation.  For example, insulin binds to certain 

motifs on insulin receptors, causing an allosteric change in the receptor structure, 

allowing for the insulin receptor to be autophosphorylated.  Therefore, in this example, 

motifs allotted for small molecule (i.e. insulin) binding may be indicative of 

phosphoproteins and thus prove useful in predicting proteins which undergo 

phosphorylation (Figure 1). 



Figure 1: Insulin receptor autophosphorylation.  Insulin recognizes a certain motif on the 

extracellular surface of the receptor, causing autophosphorylation.  This motif may be a 

general indicator for phosphoproteins.  (adapted from Stryer, Biochemistry; 996-97, 1988) 

 

Currently, there exists one program which seeks to predict phosphorylation sites 

from a sequence input.  NetPhos, available at http://www.cbs.dtu.dk/services/NetPhos/, is 

a program developed in 1999 which predicts sites by analyzing the sequence space of 

around any serine, threonine, and tyrosine found in a given sequence (Blom et al, 1999).  

Positive results are based largely around comparisons of sequence and structure to 

verified phosphorylation sites from the PhosphoBase database 

(http://www.cbs.dtu.dk/databases/PhosphoBase) developed by the same research group. 

This research paper seeks to critically evaluate the ability of the NetPhos program 

to predict true phosphorylation sites from an amino acid sequence, assessing the 

underlying assumptions under which the program functions.  Given the lack of 

bioinformatics tools available to analyze this phenomenon, the latter portion of this paper 

explores alternative methods for predicting phosphorylation sites.  Primarily, the search 

for alternatives will involve using various methods for pattern matching and sequence 

similarity searches with phosphorylated proteins. 



The NetPhos approach 

The NetPhos program utilizes an artificial neural network to predict 

phosphorylation sites from an inputted amino acid sequence (Blom et al, 1999).  An 

artificial neural network is designed upon the principles of how a true biological neural 

network operates, where a given node may have tens of thousands of inputs and a similar 

number of outputs (Figure 2).  Artificial neural networks have been used in a variety of 

prediction algorithms, including other analyses of posttranslational modification such as 

glycosylation (reviewed by Nakai, 2001). 

Figure 2: Organization of an artificial neural network. 

(source: http://www.nd.com/neurosolutions/products/ns/whatisNN.html) 

 

The strength of a neural network comes from its ability to adapt to circumstances 

to recognize trends from complex and imprecise data.  Neural networks are configured to 

an application through extensive training by exposing it to various samples.  For the 

NetPhos program, its neural network is designed for pattern recognition.  The creators of 

this artificial neural network introduced NetPhos to the PhosphoBase database of 

phosphorylated proteins for training.  The data in PhosphoBase consists entirely of 

sequences.  For any phosphorylated protein, the database provides the entire sequence of 



414 phosphoproteins followed by remarks on which residues are phosphorylated within 

the context of +/- 4 residues flanking the phosphate acceptor (Kreegipuu et al, 1999).  

Therefore, the NetPhos artifical neural network has acquired its ability to identify novel 

phosphorylation sites by identifying common prevalent features of the sequences 

immediately surrounding the phosphoacceptor residue (S/T/Y) of known 

phosphoproteins. 

The ability of any artificial neural network to succeed in interpreting new data 

depends on the quality and quantity of the existing data from which the network was 

trained.  In the case of NetPhos, this artificial neural network was trained from less than 

500 proteins.  The number of phosphoproteins identified since 1999, when the most 

current version of PhosphoBase was gathered, has certainly increased several folds.  

Given that a given phosphoprotein is likely to have more than one phosphorylated 

residue, the amount of current, relevant information missing from the NetPhos program 

may cause the performance of the program to be sub-optimal in predicting 

phosphorylation sites.  According to the PhosphoBase developer, as high as 50% of all 

proteins may be phosphorylated (Kreegipuu et al, 1999).  As artificial neural networks 

are not only developed from examples, but limited by them, the NetPhos program needs 

to be constantly updated for it to be an effective predictor.  The NetPhos neural network 

has not been retrained since its inception in 1999. 

The NetPhos program acquired its sequence recognition capabilities by analyzing 

the sequence context within which the phosphorylated residue lies.  The programmers of 

NetPhos underwent an exhaustive study to determine whether certain amino acids were 

preferred at certain positions surrounding the phosphorylated residue (Blom et al, 1999).  



For all the verified phosphorylated serines, threonines, and tyrosines from PhosphoBase, 

the twelve amino acids before and after the acceptor residue were recorded.  The 

researchers uncovered some statistically significant trends.  For example, 78% of 

phosphorylated tyrosines have at least one acidic residue within the four residues before 

the tyrosine.  For phosphorylated serines and threonines, basic residues tend to lay +/- 3 

residues from the phosphorylated site.  Also, a proline is vastly over-represented at the 

site immediately C-terminal (position +1) to the phosphorylated residue.  Overall, the 

researchers noted that certain residues were more frequently found around a 

phosphorylated S/T/Y than normal. 

The developers of the program operate under the assumption that “determinants 

of phosphorylation sites probably are no longer than about ten residues” (Blom et al, 

1999).  While this position seems moderately justified, given the trends in amino acid 

positioning surrounding the phosphorylation site stated above, this does not account for 

the possibility that other determinants of phosphorylation exist outside of the sequences 

immediately adjacent to the acceptor residue.  When a kinase or phosphatase encounters a 

potential substrate for phosphorylation or dephosphorylation, it recognizes the three-

dimensional structure of the protein.  Given the various torsion angles which 

polypeptides may adopt when folded, the residues which are spatially closest to the 

phosphorylated residue are unlikely to be those amino acids closest in sequence space, 

but possibly tens or hundreds of amino acids downstream or upstream. 

The developers of the NetPhos program also attempted to address the spatial 

context of phosphorylation sites by creating a different neural network based on structure.  

This network was generated using distance matrices acquired from PDB protein 



structures.  Unfortunately, this particular algorithm produced a high level of false 

positives (29%-41%).  This may not be surprising, given that the data set from which this 

neural network was nurtured must surely be even smaller than the 414 from 

PhosphoBase, since it is unlikely that protein structures exist for all of the verified 

phosphoproteins.  As a result, current NetPhos program only uses the sequence-based 

prediction algorithm, and not this structure-based neural network. 

After an amino acid sequence is inputted into the NetPhos interface, the program 

outputs a text page which includes a score ranging from 0-1 for each serine, threonine, 

and tyrosine in the sequence (Figure 3).  For every residue with a NetPhos score higher 

than 0.5, the program identifies it as a potential hit.  Of course, the NetPhos score of 0.5, 

which the program designates as the minimum score for potential phosphorylation sites, 

is entirely arbitrary.  Therefore, the amount of false positives can automatically be 

reduced by raising this arbitrary threshold, but at the expense of eliminating some true 

positives. 

Figure 3: Sample NetPhos output (for human Wee1). 

 

The most limiting aspect of the NetPhos program is the large number of false 

positives one receives from the output.  The program vastly overestimates the number of 

residues that are phosphorylated in a given protein sequence.  For example, when the 



sequence for the human cell cycle protein Wee1 (ascension number: P30291) was entered 

into the NetPhos program, the program identified approximately 50% (51 out of 107) of 

all serines, threonines and tyrosines in the sequence as potentially phosphorylated.  

Despite the prevalence of phosphorylation as a crucial modification in controlling cellular 

events, particularly during the cell cycle, it is highly unlikely that a given phosphoprotein 

can be phosphorylated at over 50 residues.  Recent work identifying the sites of 

phosphorylation on Xenopus Wee1 using mass spectrometry has shown that it is 

phosphorylated at 11 sites (Kim, SY and Ferrell, JE, personal communication).  

Consequently, if one attempts to identify phosphorylation sites of Wee1, the NetPhos 

program would only succeeded in eliminating one-half of the S/T/Y residues as being 

phosphorylated, leaving over 50 residues remaining to be experimentally verified as true 

or false sites, of which approximately 80% were false. 

Overall, the NetPhos program succeeds in narrowing down the possibilities for 

phosphorylation sites for a given phosphoprotein, particularly since it is currently the 

only available bioinformatics resource for that purpose.  However, the program does a 

poor job of distinguishing whether an unknown protein is phosphorylated at all or not.  

Due to high number of true positives, NetPhos would likely identify virtually any 

sequence with a serine, threonine, or tyrosine as a potential phosphoprotein.   Considering 

the fact that NetPhos also fails to consider three-dimensional positioning in its algorithm, 

the need exists for alternative methods of determining phosphorylation state of proteins. 

Alternative methods for phospho-prediction 

The NetPhos program recognizes patterns in sequences in close proximity to the 

phosphorylated residue.  For example, NetPhos may recognize that an arginine located 



two amino acids before the potential acceptor residue is indicative of phosphorylation.  A 

reasonable alternative selection criterion may involve recognizing whole motifs rather 

than just the relative location of certain residues relative to the phospho-

serine/threonine/tyrosine.  Motifs indicative of phosphorylation may include sequences 

which are close to the phosphorylated residue.  For example, RX(S/T)P is a commonly 

accepted motif for phosphorylation by cAMP-dependent protein kinase (with the bold-

italicized “S/T” indicative of the phosphorylated serine or threonine).  However, motifs 

indicative of phosphorylation may also exist much further upstream or downstream of a 

putative phosphorylated residue.  These “far-away” motifs may influence 

phosphorylation by perhaps being docking sites for kinases.  Or perhaps these “far-away” 

motifs may actually be in close 3-D spatial proximity to the phosphorylated residue 

despite being distant in sequence.   

To examine the possibility that certain motifs are indicative of phosphoproteins, a 

search was performed on various known phosphoproteins using quantitative pattern 

matching algorithms (Appendix A).  These phosphoproteins were arbitrarily chosen 

mostly from the PhosphoBase database.  To decrease the amount of sequence variation, 

the selected proteins are all human.  For pattern matching, the original Blocks database 

(http://blocks.fhcrc.org/blocks/blocks_search.html) and the eMatrix database 

(http://ematrix.stanford.edu) were used to identify known motifs which may be indicative 

of phosphorylation.  The Blocks database was used because it offered the most detailed 

results, much of which may be false or statistically insignificant, while the eMatrix 

database, in contrast, provides fewer statistical details but more refined results (Wu et al, 

1999). 



The purpose of using quantitative pattern matching was to possibly identify 

known motifs common to phosphorylated proteins.  Perhaps documented motifs existed, 

initially attributed to other protein features, which may be indicative of phosphorylation 

as well.  (For instance, perhaps these databases reveal that all phosphoproteins have a 

helix-loop-helix motif.)  However, neither of the original BLOCKS database nor eMatrix 

identified any known motifs which are common to most or all of the phosphoproteins.  

While the eMatrix program was successful at identifying various biologically relevant 

features of the phosphoproteins (for example, identifying the “Raf-like Ras-binding 

domain” from the human Raf sequence), it found no unifying motifs between all 

phosphoproteins when limited by either a 0.01 or a 0.1 significance level.  The eMatrix 

program did find some similarities between certain small pairs/subsets of 

phosphoproteins.  For instance, the MAP kinase signature was found in the Wee1, 

p44/Erk1, and Raf sequences, confirming the acknowledged generalization that MAP 

kinases are phosphorylated. 

Although the pattern matching databases were unable to discover any motif 

common to all ten phosphoproteins searched, that does not necessarily mean that no such 

motif(s) exist, but merely that such proposed motifs have yet to be identified and entered 

into the BLOCKS database.  The next logical step in identifying potential motifs common 

to phosphoproteins was to perform sequence alignments.  The ten sequences were entered 

into the ClustalW program available on the Decypher machine.  This multiple sequence 

alignment did not produce any regions of homology.  This result was not entirely 

unexpected given that these phosphoproteins are so different from each other in many 

respects.  These differences would likely provide a noisy negative background signal that 



would drown out a potential “phosphoprotein” motif, which may only be several residues 

long.  Lowering the gap opening / extension penalties from 10 / 0.05 to 1 / 0.005 did not 

help significantly, as the latter criteria only provided single amino acid alignments rather 

than the desired motifs of multiple contiguous residues. 

In an attempt to maximize the likelihood that motifs are uncovered from a 

multiple sequence alignment, pairs of phosphoproteins most likely to have evolutionary 

similarity, as determined by the dendrogram from the previous ClustalW alignment 

(Figure 4), were aligned via ClustalW.  As expected, more residues were aligned when 

dealing with two sequences rather than ten sequences.  However, no clear motifs emerged 

from these alignments either.  For example, when the phosphoproteins Grb2 and Ptn1 

were aligned with ClustalW with gap penalties of 10 / 0.05, thirty-nine amino acids were 

aligned identically between the two sequences.  But of these 39 residues, there existed 

only two pairs of consecutive identical amino acids, and no three consecutive amino acids 

were identical in both sequences.  There exist several regions where there are short 

stretches of similar, though not identical sequences (i.e. stretches with conservative 

substitutions such as phenylalanine to tryptophan, both large hydrophobic groups); motifs 

common to phosphoproteins may be hidden within these alignments. 

Figure 4: Clustal W dendogram of phosphoproteins 

 



Conclusions 

With the prevalence of phosphorylation as a mechanism for controlling various 

cellular functions, there exists a need to identify whether certain proteins are subject to 

this posttranslational modification.  Identifying novel phosphoproteins and 

phosphorylation sites would help clarify the function of previously unclassified proteins.  

Insights about a protein’s phosphorylation state shed light upon that protein’s place in a 

biological pathway. 

Currently, only one bioinformatics resource is available to identify potential 

phosphorylation sites from amino acid sequences.  This program, NetPhos, relies on an 

artificial neural networked trained to recognize phosphorylated sequences.  While this 

program does narrow down the number of serines/threonines/tyrosines likely to be 

phosphorylated, it tends to provide an overly tolerant threshold, such that many false 

positives result from a NetPhos sequence search.  Furthermore, NetPhos only considers 

residues in close proximity to the phosphate acceptor, ignoring possible motifs lying 

further away from the acceptor residue as well as secondary structure motifs which may 

predict phosphorylation. 

Using a combination of pattern matching and sequence alignment, this research 

attempted to find novel methods of predicting phosphorylation by identifying possible 

motifs indicative of phosphorylation.  No discernable pattern was found using the 

numerous variants of the BLOCKS database, meaning that any potential 

phosphorylation-motif had yet to be classified.  Several multiple sequence alignments 

were subsequently performed on phosphoprotein motifs, attempting to identify any 

sequence homology between phosphoproteins which could be candidate “phospho-



motifs.”  Overall, the sequence alignments proved unable to produce any obvious motifs, 

though a more exhaustive search may yet uncover significant regions of similarity 

between phosphoproteins. 

While motif(s) which signify phosphorylation have yet to be unearthed, the fact 

remains that newer algorithms of predicting phosphorylation are necessary to account for 

the three-dimensional nature of phosphorylation events between kinases and substrate 

phosphoproteins.  Combinations of existing bioinformatics tools, as presented here, or 

novel methodologies may provide better predictors of sequences inclined to be 

phosphorylated.
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Appendix 1:  Phosphoprotein sequences in FASTA format 
 
>gi|1351419|sp|P30291|WEE1_HUMAN Wee1-like protein kinase (WEE1hu) 
MSFLSRQQPPPPRRAGAACTLRQKLIFSPCSDCEEEEEEEEEEGSGHSTGEDSAFQEPDSPLPPARSPTE 
PGPERRRSPGPAPGSPGELEEDLLLPGACPGADEAGGGAEGDSWEEEGFGSSSPVKSPAAPYFLGSSFSP 
VRCGGPGDASPRGCGARRAGEGRRSPRPDHPGTPPHKTFRKLRLFDTPHTPKSLLSKARGIDSSSVKLRG 
SSLFMDTEKSGKREFDVRQTPQVNINPFTPDSLLLHSSGQCRRRKRTYWNDSCGEDMEASDYELEDETRP 
AKRITITESNMKSRYTTEFHELEKIGSGEFGSVFKCVKRLDGCIYAIKRSKKPLAGSVDEQNALREVYAH 
AVLGQHSHVVRYFSAWAEDDHMLIQNEYCNGGSLADAISENYRIMSYFKEAELKDLLLQVGRGLRYIHSM 
SLVHMDIKPSNIFISRTSIPNAASEEGDEDDWASNKVMFKIGDLGHVTRISSPQVEEGDSRFLANEVLQE 
NYTHLPKADIFALALTVVCAAGAEPLPRNGDQWHEIRQGRLPRIPQVLSQEFTELLKVMIHPDPERRPSA 
MALVKHSVLLSASRKSAEQLRIELNAEKFKNSLLQKELKKAQMAKAAAEERALFTDRMATRSTTQSNRTS 
RLIGKKMNRSVSLTIY 
 
>gi|121603|sp|P29354|GRB2_HUMAN Growth factor receptor-bound protein 2 (GRB2 adapter protein) (SH2/SH3 adapter GRB2) 
(ASH protein) 
MEAIAKYDFKATADDELSFKRGDILKVLNEECDQNWYKAELNGKDGFIPKNYIEMKPHPWFFGKIPRAKA 
EEMLSKQRHDGAFLIRESESAPGDFSLSVKFGNDVQHFKVLRDGAGKYFLWVVKFNSLNELVDYHRSTSV 
SRNQQIFLRDIEQVPQQPTYVQALFDFDPQEDGELGFRRGDFIHVMDNSDPNWWKGACHGQTGMFPRNYV 
TPVNRNV 
 
>gi|125651|sp|P04049|RAF1_HUMAN RAF proto-oncogene serine/threonine-protein kinase (Raf-1) (C-RAF) (cRaf) 
MEHIQGAWKTISNGFGFKDAVFDGSSCISPTIVQQFGYQRRASDDGKLTDPSKTSNTIRVFLPNKQRTVV 
NVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAASLIGEELQVDFLDHVPLTTHN 
FARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVPTMCVDWSNIRQLLLFPNSTIGDSGVPALP 
SLTMRRMRESVSRMPVSSQHRYSTPHAFTFNTSSPSSEGSLSQRQRSTSTPNVHMVSTTLPVDSRMIEDA 
IRSHSESASPSALSSSPNNLSPTGWSQPKTPVPAQRERAPVSGTQEKNKIRPRGQRDSSYYWEIEASEVM 
LSTRIGSGSFGTVYKGKWHGDVAVKILKVVDPTPEQFQAFRNEVAVLRKTRHVNILLFMGYMTKDNLAIV 
TQWCEGSSLYKHLHVQETKFQMFQLIDIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLTVKIGDFGLA 
TVKSRWSGSQQVEQPTGSVLWMAPEVIRMQDNNPFSFQSDVYSYGIVLYELMTGELPYSHINNRDQIIFM 
VGRGYASPDLSKLYKNCPKAMKRLVADCVKKVKEERPLFPQILSSIELLQHSLPKINRSASEPSLHRAAH 
TEDINACTLTTSPRLPVF 
 
>gi|548377|sp|Q05586|NMZ1_HUMAN Glutamate [NMDA] receptor subunit zeta 1 precursor (NR1) 
MSTMRLLTLALLFSCSVARAACDPKIVNIGAVLSTRKHEQMFREAVNQANKRHGSWKIQLNATSVTHKPN 
AIQMALSVCEDLISSQVYAILVSHPPTPNDHFTPTPVSYTAGFYRIPVLGLTTRMSIYSDKSIHLSFLRT 
VPPYSHQSSVWFEMMRVYSWNHIILLVSDDHEGRAAQKRLETLLEERESKAEKVLQFDPGTKNVTALLME 
AKELEARVIILSASEDDAATVYRAAAMLNMTGSGYVWLVGEREISGNALRYAPDGILGLQLINGKNESAH 
ISDAVGVVAQAVHELLEKENITDPPRGCVGNTNIWKTGPLFKRVLMSSKYADGVTGRVEFNEDGDRKFAN 
YSIMNLQNRKLVQVGIYNGTHVIPNDRKIIWPGGETEKPRGYQMSTRLKIVTIHQEPFVYVKPTLSDGTC 
KEEFTVNGDPVKKVICTGPNDTSPGSPRHTVPQCCYGFCIDLLIKLARTMNFTYEVHLVADGKFGTQERV 
NNSNKKEWNGMMGELLSGQADMIVAPLTINNERAQYIEFSKPFKYQGLTILVKKEIPRSTLDSFMQPFQS 
TLWLLVGLSVHVVAVMLYLLDRFSPFGRFKVNSEEEEEDALTLSSAMWFSWGVLLNSGIGEGAPRSFSAR 
ILGMVWAGFAMIIVASYTANLAAFLVLDRPEERITGINDPRLRNPSDKFIYATVKQSSVDIYFRRQVELS 
TMYRHMEKHNYESAAEAIQAVRDNKLHAFIWDSAVLEFEASQKCDLVTTGELFFRSGFGIGMRKDSPWKQ 
NVSLSILKSHENGFMEDLDKTWVRYQECDSRSNAPATLTFENMAGVFMLVAGGIVAGIFLIFIEIAYKRH 
KDARRKQMQLAFAAVNVWRKNLQDRKSGRAEPDPKKKATFRAITSTLASSFKRRRSSKDTSTGGGRGALQ 
NQKDTVLPRRAIEREEGQLQLCSRHRES 
 
>gi|121959|sp|P02261|H2AC_HUMAN Histone H2A.c/d/i/n/p (H2A.1) (H2A/c) (H2A/d) (H2A/i) (H2A/n) (H2A/p) (H2A.1b) 
MSGRGKQGGKARAKAKTRSSRAGLQFPVGRVHRLLRKGNYAERVGAGAPVYLAAVLEYLTAEILELAGNA 
ARDNKKTRIIPRHLQLAIRNDEELNKLLGKVTIAQGGVLPNIQAVLLPKKTESHHKAKGK 
 
>gi|121532|sp|P13224|GPBB_HUMAN Platelet glycoprotein Ib beta chain precursor (GP-Ib beta) (GPIbB) (GPIb-beta) (CD42B-beta) 
(CD42C) 
MGSGPRGALSLLLLLLAPPSRPAAGCPAPCSCAGTLVDCGRRGLTWASLPTAFPVDTTELVLTGNNLTAL 
PPGLLDALPALRTAHLGANPWRCDCRLVPLRAWLAGRPERAPYRDLRCVAPPALRGRLLPYLAEDELRAA 
CAPGPLCWGALAAQLALLGLGLLHALLLVLLLCRLRRLRARARARAAARLSLTDPLVAERAGTDES 
 
>gi|17380404|sp|P15336|ATF2_HUMAN Cyclic-AMP-dependent transcription factor ATF-2 (Activating transcription factor 2) 
(cAMP response element binding protein CRE-BP1) (HB16) 
MSDDKPFLCTAPGCGQRFTNEDHLAVHKHKHEMTLKFGPARNDSVIVADQTPTPTRFLKNCEEVGLFNEL 
ASPFENEFKKASEDDIKKMPLDLSPLATPIIRSKIEEPSVVETTHQDSPLPHPESTTSDEKEVPLAQTAQ 
PTSAIVRPASLQVPNVLLTSSDSSVIIQQAVPSPTSSTVITQAPSSNRPIVPVPGPFPLLLHLPNGQTMP 
VAIPASITSSNVHVPAAVPLVRPVTMVPSVPGIPGPSSPQPVQSEAKMRLKAALTQQHPPVTNGDTVKGH 
GSGLVRTQSEESRPQSLQQPATSTTETPASPAHTTPQTQSTSGRRRRAANEDPDEKRRKFLERNRAAASR 
CRQKRKVWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAHKDCPVTAMQKKSGYHTADKDDSS 
EDISVPSSPHTEAIQHSSVSTSNGVSSTSKAEAVATSVLTQMADQSTEPALSQIVMAPSSQSQPSGS 
 



>gi|131467|sp|P18031|PTN1_HUMAN Protein-tyrosine phosphatase, non-receptor type 1 (Protein-tyrosine phosphatase 1B) (PTP-1B) 
MEMEKEFEQIDKSGSWAAIYQDIRHEASDFPCRVAKLPKNKNRNRYRDVSPFDHSRIKLHQEDNDYINAS 
LIKMEEAQRSYILTQGPLPNTCGHFWEMVWEQKSRGVVMLNRVMEKGSLKCAQYWPQKEEKEMIFEDTNL 
KLTLISEDIKSYYTVRQLELENLTTQETREILHFHYTTWPDFGVPESPASFLNFLFKVRESGSLSPEHGP 
VVVHCSAGIGRSGTFCLADTCLLLMDKRKDPSSVDIKKVLLEMRKFRMGLIQTADQLRFSYLAVIEGAKF 
IMGDSSVQDQWKELSHEDLEPPPEHIPPPPRPPKRILEPHNGKCREFFPNHQWVKEETQEDKDCPIKEEK 
GSPLNAAPYGIESMSQDTEVRSRVVGGSLRGAQAASPAKGEPSLPEKDEDHALSYWKPFLVNMCVATVLT 
AGAYLCYRFLFNSNT 
 
>gi|119172|sp|P13639|EF2_HUMAN Elongation factor 2 (EF-2) 
MVNFTVDQIRAIMDKKANIRNMSVIAHVDHGKSTLTDSLVCKAGIIASARAGETRFTDTRKDEQERCITI 
KSTAISLFYELSENDLNFIKQSKDGAGFLINLIDSPGHVDFSSEVTAALRVTDGALVVVDCVSGVCVQTE 
TVLRQAIAERIKPVLMMNKMDRALLELQLEPEELYQTFQRIVENVNVIISTYGEGESGPMGNIMIDPVLG 
TVGFGSGLHGWAFTLKQFAEMYVAKFAAKGEGQLGPAERAKKVEDMMKKLWGDRYFDPANGKFSKSATSP 
EGKKLPRTFCQLILDPIFKVFDAIMNFKKEETAKLIEKLDIKLDSEDKDKEGKPLLKAVMRRWLPAGDAL 
LQMITIHLPSPVTAQKYRCELLYEGPPDDEAAMGIKSCDPKGPLMMYISKMVPTSDKGRFYAFGRVFSGL 
VSTGLKVRIMGPNYTPGKKEDLYLKPIQRTILMMGRYVEPIEDVPCGNIVGLVGVDQFLVKTGTITTFEH 
AHNMRVMKFSVSPVVRVAVEAKNPADLPKLVEGLKRLAKSDPMVQCIIEESGEHIIAGAGELHLEICLKD 
LEEDHACIPIKKSDPVVSYRETVSEESNVLCLSKSPNKHNRLYMKARPFPDGLAEDIDKGEVSARQELKQ 
RARYLAEKYEWDVAEARKIWCFGPDGTGPNILTDITKGVQYLNEIKDSVVAGFQWATKEGALCEENMRGV 
RFDVHDVTLHADAIHRGGGQIIPTARRCLYASVLTAQPRLMEPIYLVEIQCPEQVVGGIYGVLNRKRGHV 
FEESQVAGTPMFVVKAYLPVNESFGFTADLRSNTGGQAFPQCVFDHWQILPGDPFDNSSRPSQVVAETRK 
RKGLKEGIPALDNFLDKL 
 
>gi|232066|sp|P27361|MK03_HUMAN Mitogen-activated protein kinase 3 (Extracellular signal-regulated kinase 1) (ERK-1) (Insulin-
stimulated MAP2 kinase) (MAP kinase 1) (MAPK 1) (p44-ERK1) (ERT2) (p44-MAPK) (Microtubule-associated protein-2 kinase) 
MAAAAAQGGGGGEPRRTEGVGPGVPGEVEMVKGQPFDVGPRYTQLQYIGEGAYGMVSSAYDHVRKTRVAI 
KKISPFEHQTYCQRTLREIQILLRFRHENVIGIRDILRASTLEAMRDVYIVQDLMETDLYKLLKSQQLSN 
DHICYFLYQILRGLKYIHSANVLHRDLKPSNLLINTTCDLKICDFGLARIADPEHDHTGFLTEYVATRWY 
RAPEIMLNSKGYTKSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDLNCIINMKARNY 
LQSLPSKTKVAWAKLFPKSDSKALDLLDRMLTFNPNKRITVEEALAHPYLEQYYDPTDEPVAEEPFTFAM 
ELDDLPKERLKELIFQETARFQPGVLEAP 
 
 


