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Collaborative Filtering (CF) has proven to be a valuable tool for predicting relevant items in many different 
domains from e-commerce to information retrieval. In this paper we explore the applicability of CF to 
predicting protein-protein interactions by using the interaction patterns between first and second order 
neighbors in the interaction network. We investigate three different prediction strategies, describe the 
algorithms that support the prediction process and evaluate the performance of the methods on the 
Saccharomyces cerevisiae interaction network containing 3360 proteins and 13669 interactions. We find 
that for a large number of proteins the methods perform surprisingly well, on average being able to 
correctly predict missing interactions in 20% of cases! The most significant factor affecting the quality of 
predictions appears to be the number of interactions already known about a given protein. It is equally 
intriguing that this prediction performance is achieved without using any kind of prior biological 
knowledge during the prediction process. We believe that with a judicious use of such knowledge the 
quality of the predictions could be greatly improved. 
 
The explosive growth of the World Wide Web and the emergence of E-Commerce have 
led to the development of recommender systems [1-4]. These systems provide people 
with personalized knowledge discovery mechanisms that learn the users’ preferences 
from past choices and/or explicitly expressed opinions. Collaborative Filtering (CF) is 
one such widely used recommender system that works by finding the preference 
neighborhoods that best describe a given person.  CF may also be considered an 
unsupervised, instance-based learner that first needs to be presented with a large number 
of training cases and then, in the prediction phase, matches the input to one or more 
instances in the training set.   
 
Since CF methods are widely used in e-commerce (Amazon, Launch) there is a 
significant body of work addressing the fundamental challenges of their accuracy and 
scalability. Great progress has been made in the past few years and the algorithms and 
methodologies available today can generate high quality predictions based on millions of 
entries in less than a second. Still these prediction methods have not yet been used in 
bioinformatics, mostly because the Shopper-Item-Rating mapping that all CF methods 
rely on does not seem to lend itself to problems faced in biology. Yet on closer inspection 
we can easily see that the Shopper relation describes the framework in which the Items 
are being evaluated, while the Rating field above can be thought of as an expression of 
the relevance (appropriateness) of the Item for the Shopper. This discovery, coupled with 
the understanding of how the prediction process takes place, allows us to apply the 
metaphor of “people shopping around for items” to the biological domain where 
“proteins choose which other proteins they prefer to interact with”. The algorithms that 
we chose to evaluate for this paper are model-based top-N methods that can build an 
internal prediction model with the so-called user-item, item-item or probabilistic 
approaches. We define the term prediction to mean the result of a process that produces a 
certain number of candidates. We will consider a prediction to be correct if one or more 
of the candidates match a known, relevant item. To evaluate our methods we follow the 



standard methodologies used in evaluating machine learning algorithms. We will create 
training and test sets for each of our three methods and we will attempt to predict the 
items in the test set based on the items in the training set. As we will show later, the 
amount of available data greatly affects the performance of the algorithms.  Therefore we 
aimed to reduce the size of the test set and raise the number of cross validations. Due to 
the highly heterogeneous nature of the underlying network it would be very difficult to 
estimate the statistical errors caused by the limited number of cross validations. We 
therefore chose the method that is often referred to as “all-but-one” where we placed a 
single interaction in the test set and then used the all the remaining data as the training 
set. For each method we repeated the process 13699 times to cover every possible 
interaction. We will note here that the interactions are symmetrical with respect to the 
proteins. Thus each removal may be independently predicted from both proteins thus for 
each method we were able to generate 27398 predictions. We define the word basket as 
the collection of items that are used as the seed for the prediction. In our mapping for 
example, if we were to remove the interaction between protein P and protein Q we would 
have two possible baskets, all the remaining interactions of Q and all the remaining 
interactions of P . The training data would consist of all the interactions with the 
exception of the link between P and Q. During the prediction process we would attempt 
to predict the link between P and Q based on the training data and by using both baskets 
in turn. In our terminology both P and Q are users and predicting the interaction between 
them means determining whether Q is an item of P or P is an item of Q. 
 
We’ll now describe the algorithms used during the prediction process. Let’s consider a 
space with N users and M items. In the user-item scenario an M dimensional vector 
characterizes every user, where each index corresponds to a single item. The value of the 
vector at an index is the rating (relevance) expressed by the user on the item in question. 
In most cases the distribution of items across users is highly non-linear and the users tend 
to rate only a very small subset of the available items, thus making these rating vectors 
very sparse. The user-item prediction process takes a basket and searches the training set 
for a neighborhood. If found, this neighborhood will contain those rating vectors that are 
most similar to the basket. Then as the final step the neighborhoods are aggregated to 
generate the most likely candidates. Both the neighborhood formation process and the 
aggregation step have been extensively studied and a wide variety of similarity distances 
and weighting strategies have been employed. For this study we are using the cosine 
metric, where the similarity between two vectors is expressed as the cosine of their angle 
in the M dimensional space. Items are weighted with this same metric, by summing these 
weights across all neighbors.  
 
The item-item method operates on the same rating matrix as the previous method. In this 
method, however, it is the items that are grouped into neighborhoods based on the N 
dimensional vector representing the users that considered the item relevant.  Aggregating 
the most similar items corresponding to the items in the basket generates the predictions. 
We used the same cosine similarity as before as our distance metric. Finally the 
probabilistic approach uses a similarity measure proportional to the conditional 
probability of an item being present. In particular the conditional probability that protein 
that interacts with P also interacts with Q is the ratio of the number of proteins that 



interact with both P and Q and the number of proteins that interact with P. The formula 
while simple is subject to various artifacts and limitations. Numerous corrections and 
normalizations need to be employed to address these. The exact details regarding the 
implementation of these in our methods can be found in [3].  
 
Studies show that depending on the values of N and M as well as the distribution of 
ratings across them there may be significant performance gains between methods, but the 
absolute accuracy of them remains approximately the same. Most intriguingly, it has been 
also shown that whenever multiple correct (relevant) answers exist, these different 
methods will return notably different subsets of the relevant candidates. Each method is 
more sensitive to a different kind of symmetry present in the relations that are being 
studied. Our goal is to gain some insight into how well these methods work and also to 
infer rules and patterns within the subsets that they return.  
 
We obtained the protein-protein interaction data from DIP (Database of Interacting 
Proteins) containing a total of 4716 proteins and 15116 interactions among them. If we 
were to represent these interactions as a network where the nodes are the proteins and the 
edges represent an interaction between two proteins then the resulting network will 
exhibit a scale free property. A consequence of this property is that there are a large 
number of proteins that have only one interaction (low degree). Since our study focuses 
on discovering interaction pattern conservation between proteins these singly connected 
items cannot possibly be predicted with the methods that we have set out to evaluate. We 
therefore chose to remove these from our network. As the removal process may affect the 
connectivity of other proteins it needs to be performed in an iterative manner until no 
more changes are needed. By the end of this process we had 3360 proteins and 13669 
interactions left, with every protein participating in at least two interactions. Since the 
protein interaction symmetrical, in the actual representation the total number of 
interactions was 2*13669=27388. The next step was to map the CF framework onto this 
interaction network. 
 
Every protein in the network interacts with two or more proteins that in turn interact with 
at least one more protein. This allows us to consider every protein as a “user” that has 
selected a number of “items” that happen to be other proteins. In our case we can assume 
the mere presence of an interaction means that it has biological relevance, therefore we 
consider it as a positive rating. Thus this problem has been mapped from a biological 
problem of protein interactions to the E-commerce problem where each protein is treated 
as a shopper that has already “bought” a number of other proteins and is looking “to buy” 
another one. The most obvious question one faces is why would an e-commerce method 
be applicable to a biological problem. The immediate answer to it is that none of these 
methods have any built-in knowledge of the domain that they are being used for. If the 
pattern of buying a DVD player and DVDs is observed, that is not because the system 
was coded to identify the connection between the two. What the system recognizes is a  
non-explicit manifestation of this connection over multiple transactions. Similarly, the 
affinity of a number of proteins towards each other may have various explanations, yet 
the CF algorithms will be able to identify missing elements without knowing what was 
the reason that these proteins interact with each other. 



 
To quantify the quality of the CF algorithms we have first set out to verify the ability of 
the algorithms to predict a missing interaction from a training set that is missing only the 
interaction that will be predicted.  
 

After running our 
programs we found that 
we were able to generate 
at least one correct 
prediction for only 44% 
of the proteins. The 
methods that we employ 
critically depend on the 
connections within the 
interaction network. The 
fewer connections the 
less likely is to be able to 
infer further information. 
In the figure at the left 

we show that the ability to generate at least one correct prediction strongly correlates with 
the node degree (the number of interactions a protein participates in) with the vast 
majority of the “unpredictable” proteins having less than 5 interactions. We note that 
there is a good number of low degree proteins that can be predicted for, so a low 
connectivity does not necessarily preclude a protein from being correctly identified. The 
percentage across methods does not vary significantly therefore we report an average 
number of 1800 to convey the order of magnitude of the numbers involved. 
 

In this next chart we show 
a comparison of the 
performance of the three 
methods on the proteins 
that we could correctly 
predict at least once 
(approximately 1500) as a 
function of candidate 
number. We defined a 
prediction to be successful 
if the removed protein was 
among the candidates 
generated as a prediction. 
For every method the 
candidates are ranked by 
their estimated relevance, 

thus higher order candidates are expected to be less accurate. As one might expect an 
increasing number of candidates increases the rate of success at the expense of generating 
false positives. But we note that the rate of increase is highly nonlinear, tapering off at 
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high number of candidates. What this means is that the methods are accurate enough to 
produce their best candidates in the first few returns. The plots show that even with a 
single candidate the prediction process is able to identify a missing interaction 8% of the 
time. The frequency of the correct guesses allowing only the first five candidates is more 
than 20%!   
 

 
Since predictions can be generated from the baskets corresponding to both proteins we 
chose to also display the ability of the methods to correctly identify a missing interaction 
if any one of the baskets predicted it (double predictions) or whenever both baskets 
predicted it (full consensus). We note that the user-item method appears to significantly 
outperform the other two in the full consensus mode, while in other instances the item-
item based method appears to be the least effective. 

 
We now turn our 
attention to analyzing the 
distribution of correct 
predictions across the 
entire set of proteins. 
Specifically, we are 
interested inferring what 
makes certain proteins 
more suited to be 
predicted for and whether 
the distribution of the 
predictions can help us 
identify some groups of 
proteins. Each of the 

three methods appears to produce similarly shaped distributions, with the probabilistic 
approach performing much better at lower qualities. The graph above shows the number 
(as percentage) of proteins that could be predicted with a given quality. We define the 
quality to be the percentage of successful predictions for a given protein based on the 
removal and prediction of every interaction in turn. For a protein with 10 interactions 
there will be 10 predictions based on baskets that are each missing a different interaction. 
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If five of these predictions are correct the prediction quality for this protein will be 5/10, 
that is 50%.. 
 

A way to quantify the 
differences between 
methods is to analyze the 
overlaps between the 
candidates generated by 
the different methods. 
The chart on the left 
displays the percentage 
of the correct predictions 
for a 10-candidate 
prediction strategy for 
various combination 
methods. For example 
the OR(PI) label 

specifies the case where a prediction were considered to be correct if either of the two 
methods probabilistic and  item-item generated a correct prediction for any given 
interaction. The increase in the number of correct prediction will be directly proportional 
with the correct prediction produced by one method but missed by the other. As we can 
observe the probabilistic approach is best augmented by the user-item yet even a full 
consensus among all methods can find the missing interaction in 15% of the cases. A 
more precise comparison of the differences between these methods would involve an in 
depth analysis of the sensitivity and selectivity of each method.    
 
In conclusion, we have applied a group of recommender systems used in e-commerce to a 
novel domain. Early results suggest that the method has the potential to be a valuable 
addition to other bioinformatics methods. We were able to correctly predict a high 
percentage of the interactions in a protein interaction network. Further studies are needed 
to identify the underlying mechanisms that promote or hinder the applicability of the 
methods. We plan to make use of results published in recent Bayesian interaction 
prediction studies [6] to incorporate more prior knowledge at the prediction phase. 
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