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 Antiretroviral drug therapy has been one of the few promising areas in the fight 

against HIV, contributing to a significant reduction in mortality and morbidity due to 

HIV in the developed world.  However, successful use of antiretroviral drugs is plagued 

by the phenomenon of drug resistance.  A crucial challenge facing antiretroviral therapy 

is the development of accurate, convenient methods of resistance testing (6).  This paper 

will review the role of resistance testing in the treatment of HIV.  The paper will focus on 

genotype testing, a particularly promising method of resistance testing that uses 

computational analysis to determine drug susceptibility from sequence information.  The 

role of phenotype information in improving genotype interpretation will be analyzed by 

comparing predictions made by genotype interpretation systems from three sources, 

Agence Nationale de Recherches sur le Sida (ANRS), HIV RT and Protease Sequence 

Database (HIVdb), and Rega Institute (Rega), to phenotypic data. 

Background 

Drug resistance 

 The three classes of antiretroviral drugs, nucleoside analog reverse transcriptase 

inhibitors (NRTI), non-nucleoside analog reverse transcriptase inhibitors (NNRTI), and 

protease inhibitors (PI) all target either HIV’s reverse transcriptase enzyme or its 

protease.  Drug resistance occurs when mutations in these targets make a drug no longer 

able to inhibit viral replication.  Unfortunately, it has been found that many mutations 

also confer cross-resistance, where resistance to one drug additionally confers resistance 

to other drugs within that drug class.  

 Several factors contribute to the rapid development of drug resistance observed in 

HIV.  The error-prone reverse transcriptase enzyme, which lacks the ability to proofread 



during replication, along with the high rate of HIV replication, produce enormous genetic 

variation.  The HIV population in any one person is a “quasi-species,” consisting of many 

related but genetically distinct variants.  In an untreated, infected individual, every single 

possible point mutation is estimated to occur between 10^4 and 10^5 times per day (18).  

During drug therapy, mutations conferring resistance are selected for, and recombination 

allows the virus to even more rapidly develop resistance by exchanging drug resistant 

mutations (13). 

 Drug resistance is an enormous and growing problem.  In the United States and 

Europe, 10% of new infections are with strains of HIV that already are resistant to at least 

one class of anti-HIV drugs.  This clearly poses major challenges to providing 

antiretroviral therapy since most effective therapy requires using drugs from at least two 

of the three drug classes (19). 

Resistance Testing 

 Resistance testing has the potential to be a valuable tool in dealing with drug 

resistance.  Retrospective studies have shown that resistance testing can predict clinical 

outcomes (3).  Several large prospective studies where resistance testing is used as a 

guide for therapy have also demonstrated that resistance testing can produce better 

clinical outcomes than standard care procedures (22, 10, 6).  While results have varied, it 

appears that resistance testing can be beneficially integrated into treatment.  In fact, 

guidelines by the International AIDS Society-USA and the EuroGuidelines group 

recommend considering resistance testing for a variety of situations, including primary 

HIV-1 infection and treatment failure (18). 



 However, despite the benefits, resistance testing is a long way from becoming 

routine procedure in the treatment of HIV.  This is true for a variety of factors, including 

the hazards of handling HIV in the workplace and the availability of alternative 

treatments if resistance is found.  Other important challenges for resistance testing are 

improving reliability in detecting even tiny populations of drug resistance virus and 

accurately interpreting test results (7).  

 The two main types of resistance testing are phenotype testing and genotype 

testing.  Phenotype testing looks at drug resistance in vitro, measuring the extent to which 

specific drugs or drug combinations inhibit viral replication in cultured cells.  Genotype 

testing analyzes the sequence information of the virus, inferring drug resistance from 

mutations associated with resistance. 

Phenotype testing  

   In this test, a recombinant virus is created with a reference strain of the virus 

along with the protease and reverse transcriptase genes of a patient’s virus pool.  This 

virus is subjected to increasing concentrations of the antiretroviral drug in order to 

determine the amount of drug required to inhibit replication by 50%, termed the IC50.  

This IC50 value is compared to the value for a wild-type virus culture, and an increase in 

IC50 above a certain level indicates reduced susceptibility (23). 

 Although phenotype testing provides a direct, quantitative measurement of drug 

resistance, several practical difficulties have obstructed its adoption.  Phenotype assays 

are very expensive, costing $700 to $900 per sample.  In addition, the testing procedure is 

complex and only offered by a few companies.  Furthermore, processing time can take as 



long as 8 weeks.  Unless these issues can be addressed, there is little chance that 

phenotype testing can possibly be adopted on a widespread basis (23) 

Genotype testing 

 In genotype testing, the reverse transcriptase and protease samples are sequenced.  

The genotype assay returns either the sequence data or a list of the differences from the 

consensus sequence.  This data is then analyzed by an interpretation system that infers 

drug resistance based on the mutations present (18). 

 Genotype testing has enjoyed much wider usage because the procedure is much 

simpler, the costs are lower, and the processing time is shorter.  Genotype assays 

typically cost around $400 and take 2 weeks for processing (23).  Reliable sequencing is 

readily available through a number of different methods, including dideoxynucleotide 

sequencing, clonal sequencing, and population-based sequencing.  While the current 

genotyping kits have been primarily developed for subtype B strains, a recent study found 

that they were effective in sequencing non-subtype B strains as well (1).  A recent cost-

benefit analysis supported genotypic testing after treatment failure (5).  These factors 

suggest that genotype testing will continue to be the more common method and, if 

resistance testing does become widespread in usage, it will probably be through genotype 

testing. 

Genotype Interpretation Systems 

 The main challenge facing genotype testing is not obtaining the sequence data, 

but how to interpret it.  Interpreting a given sequence requires analyzing over 100 amino 

acids across 40 codons that have been observed to confer some degree of resistance.   

These mutations can interact in a variety of different ways.  For instance, a mutation that 



confers resistance to one drug can suppress resistance in another.  Cross-resistance, where 

a mutation selected for by one drug also confers resistance to other drugs in its class, 

further complicates interpretation.  Systems must take into account all these complex 

interactions between different combinations of mutations.  Then, the system must make a 

qualitative judgment of susceptibility based on a huge amount of clinical and laboratory 

data.  As new results become available and new drugs are approved, the system must be 

updated to incorporate the new information (14). 

 Currently, there are over 20 interpretation systems available.  Several studies have 

been performed analyzing the concordance of some of the most popular interpretation 

systems and found significant discrepancies.  One study comparing three widely used 

algorithms, TruGene, Stanford HIV RT and Protease Sequence Database (HIVdb), and 

VirtualPhenotype found concordance in only 13.7% of samples (8).  The largest such 

study found a better concordance of 66.4% when comparing 30,000 interpretations by 

ANRS, Rega, and Visible Genetics (VGI-6) (14).  Nevertheless, it is clear that genotype 

interpretations vary widely and that there is no clear consensus on which interpretation is 

best. 

 These comparative studies have highlighted certain trouble spots for interpretation 

algorithms.  Algorithms tend to disagree most often when interpreting resistance to 

nucleoside reverse transcriptase inhibitors (NRTIs).  The drugs that were most commonly 

cited as having discordant interpretations were abacavir, didanosine, stavudine, 

amprenavir, and lopinavir. (8, 9, 17, 24).  .   

Genotype vs. Phenotype testing 



 Genotype and phenotype tests have been observed to produce discordant results.  

There are several possible explanations for this.  If the resistance is caused by a rare 

mutation or rare combination of mutations, the genotype interpretation system may be 

unable to identify the sequence as resistant.  In addition, if there is insufficient existing 

literature describing a drug, the interpretation system may not be informed of all the 

causes of resistance (11).  However, in cases where there exist tiny populations of drug 

resistant viruses, genotype testing tends to be more sensitive than phenotype testing.  

Phenotype tests may be unable to observe the effects of this minor population, whereas a 

genotype test could recognize the drug resistant mutations from the sequence data.  

Another major factor contributing to discordant results is the complex interaction 

between mutations.  For instance, one mutation may have a re-sensitization effect, 

conferring resistance to one drug but re-sensitizing the virus to another drug.  In 

phenotype tests, the “re-sensitized” mutation would be masked (14). 

 Which test, then produces the more clinically relevant results? The fact that 

phenotype testing provides a direct test while genotype testing is based on inference 

suggests that phenotype testing may be better.  However, phenotype tests have performed 

poorly in studies where it has been used as a guide.  In contrast, clinical outcomes have 

generally been better in studies where genotype testing was used (18).  In addition, two 

large trials that directly compared the two testing types obtained better clinical outcomes 

for genotype testing (10, 22). 

 Though genotype testing appears to be the more practical as well as the more 

effective of the two, the importance of phenotype testing should not be discounted.  Many 

improvements still remain to be made in genotype interpretation systems, and phenotype 



results play a crucial role in that process.  As discussed above, phenotype tests can 

produce valuable, complementary information to genotype interpretations (11).  An 

excellent example of this is a study by Parkin et al where phenotype information was 

used to improve predictions for the drug lopinavir by GeneSeq, a proprietary algorithm.  

Genotype and phenotype results were compared for concordance.  Mutations that were 

over-represented in discordances were identified.  These mutations were analyzed to 

determine mutations and variants that had not been included in the original algorithm 

(12). 

 I chose to compare phenotype results with genotype interpretations from three 

widely-used, non-proprietary algorithms on a large set of data.  I was interested in 

describing the differences between genotype and phenotype results and discussing 

whether greater incorporation of phenotype results may be able to similarly improve 

these three algorithms. 

Comparison of Genotype and Phenotype Tests 

Material and Methods 

Sequences and Phenotypic data 

A total of 8079 sequences with available phenotypic data were analyzed.  4365 of 

these were RT sequences and 3714 were protease sequences.  Sequences were taken from 

the Stanford HIV RT Protease Sequence Database.   

Interpretation Systems 

 Sequence information was interpreted by three algorithms, HIVdb (20), ANRS 

(10), and Rega (24).  All three algorithms are designed for clinical use and make 

interpretations with rule-based algorithms, where each rule is conditioned upon the 



presence of certain mutations and assigns a level of inferred resistance to certain drugs.  

All three derive their rules from literature and clinical data.   

ANRS and Rega output reports three levels of resistance, susceptible (S), 

intermediate (I), and resistant (R).  HIVdb reports five levels, susceptible, potential low-

level resistance, low-level resistance, intermediate resistance, and high-level resistance.  

For the purposes of comparison, susceptible and potential low-level resistance was 

considered susceptible (S), low-level resistance and intermediate resistance was 

considered intermediate (I), and high-level resistance was considered resistant (R). 

Analysis 

The sequences were analyzed through HIValg: Resistance Algorithm Comparison 

on the Stanford HIV RT Sequence Database (http://hivdb.stanford.edu).  HIValg contains 

implementations of each of the interpretation systems using the Algorithm Specific 

Interface (2). 

Results were compiled and analyzed in two Excel spreadsheets, one for protease 

data and the other for reverse transcriptase data.  The number and percent of 

concordances and discordances was calculated.  In addition, the number and percent of 

major discordances (S/R, R/S) and minor discordances (S/I, R/I, I/S, I/R) was also 

calculated.  These values were also found for each drug and each drug class.  This 

analysis was then repeated for each algorithm individually. 

Numbers for each combination of interpretations (S/S, S/I, S/R, I/S, I/I, I/R, R/S, 

R/I, R/R) were calculated to find the weighted Kappa statistic (4).  This analysis was 

performed to find the Kappa statistic for each algorithm individually as well as for only 

the protease data and only the reverse transcriptase data. 



Results 

Agreement of interpretations with phenotype (Table 1) 

The Rega algorithm was found to have the best agreement among all sequences as 

well as the best agreement among reverse transcriptase sequences, with a weighted kappa 

value of .620 and .712, respectively.  However, HIVdb was found to have the best 

agreement among just protease sequences, with a weighted kappa value of .564 

Table 1 
 ANRS HIVdb Rega 
 

PR 

 

 

.530 

 

.564 

 

.534 

RT 

 

All 

.598 

 

.562 

.620 

 

.592 

.712 

 

.620 

 

Discordance between genotype and phenotype (Figure 1) 

Analysis of the data revealed significant discordance between genotype 

interpretation and phenotype overall. Of the interpretations made by the three algorithms, 

34.22% of them were discordant with phenotypic data.  However, further inspection 

reveals that most of these are minor discordances.  27.57% of the interpretations are 

minor discordances while only 6.65% are major discordances. 

 Looking at the algorithms individually, Rega interpretations were found to have 

the lowest prevalence of discordance overall, with a discordance of 31.39%.  Rega also 

produced the lowest individual rates for both major discordance and minor discordance, 



with values of 5.10% and 26.29%, respectively.  ANRS interpretations had the second 

lowest prevalence of discordance overall, with a discordance of 8.78%.  Rates for major 

and minor discordance were 8.78% and 35.07%, respectively.  HIVdb interpretations had 

a discordance of 35.88%, the worst overall rate of discordance.  However, the bulk of this 

consists of minor discordances.  While its rate of minor discordances is 29.38%, its rate 

of major discordances is only 6.5%, significantly lower than the rate for ANRS. 

Figure 1 
 

 

 

 

 

 

 

 

 

 

Discordance between genotype and phenotype by drug class (Figure 2, Figure 3) 

Analysis of discordances by drug class revealed that interpretations for NNRTI 

drugs were considerably less discordant than interpretations for either NRTI or PI.  The 

major discordance rate was 2.23% and the minor rate was 14.47%, adding up to a total 

discordance of 16.7%.  All of these values are less than half the corresponding values for 

either NRTI’s or PI’s. 
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The next lowest rate of discordance was for PI interpretations, with a rate of 

36.89% compared to 38.03% for NNRTI interpretations.  However, although overall rate 

of discordance was lower, PI interpretations had a higher rate than NRTI of major 

discordance, with a rate of 8.08% compared to 6.63%. 

Figure 2 
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A closer look at the discordance by drug class for each algorithm individually 

revealed some interesting trends (Figure 3).  The algorithms generally had similar 

discordance rates for PI drugs, but discordance rates varied widely for NRTI drugs. 

Although the Rega algorithm had the lowest rate of discordance overall, its 

performance varied significantly by drug class.  For NNRTI drugs, where all algorithms 

had lower rates of discordance, the Rega algorithm actually had higher discordance than 

the other two algorithms.  Rega interpretations had 1.89% major discordance and 17.04% 

minor discordance for an overall rate of 18.93%.  However, for NRTI drugs, where the 

three algorithms in general had higher discordance, Rega interpretations had much lower 

rates of discordance.  Its major rate of 3.28%, minor rate of 26.02%, and overall rate of 



29.30% are all significantly lower than the rates of the other two algorithms.  In general, 

the Rega algorithm was found to have a more level rate of discordance across drug 

classes. 

In contrast, the HIVdb algorithm varied widely in its rate of discordance by drug 

class.  For NNRTI drugs, where all algorithms had lower rates of discordance, HIVdb 

interpretations had an even lower rate.  Major and minor discordance rates were 1.79% 

and 13.52%, respectively.  However, for NRTI drugs, where the algorithms generally had 

higher discordance, HIVdb performed particularly poorly.  The rate of major discordance 

and minor discordance was 7.73% and 36.03%, respectively, for a very high total rate of 

43.76%. 

Analysis also revealed that while the ANRS algorithm varied in its overall rate of 

discordance, it had the highest rate of major discordance across all drug classes.  ANRS 

interpretations had major discordance rates of 3.41% for NNRTI drugs, 9.17% for NRTI 

drugs, and 9.82% for PI drugs. 

Figure 3 
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Discordance between Genotype and Phenotype by drug (Figure 4, Figure 5) 

Inspection of genotype/phenotype correlation by drug is especially revealing, as 

the concordance varies by drug and interpretations for certain drugs stand out as having 

particularly poor concordance.  The highest rate of discordance was seen for didsanosine 

(DDI) at 50.4%, zalcitabine (DDC) at 44.71%, stavudine (D4T) at 44.53%, abacavir 

(ABC) at 41.18%, amprenavir (APV) at 46.71%, indinavir (IDV) at 41.6%, and lopinavir 

(LPV) at 41.59%. 

Figure 4 
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Analyzing the discordance by drug for each algorithm individually provides more 

concrete information on how well each algorithm performs for each drug.  One 

particularly noticeable characteristic is that for HIVdb, the highest rates of discordance 

are found in a few specific drugs.  HIVdb had much higher discordance than the other 

two algorithms for didanosine (DDI), zalcitabine (DDC), and amprenavir (APV). 



Figure 5 

Genotype/Phenotype Discordance by Drug
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Discussion 

 Although there was significant discordance between genotype/phenotype results 

throughout, this analysis highlighted several areas where discordance was significantly 

more prevalent.  Interestingly, these corresponded well with areas where studies 

comparing genotype/genotype results between interpretation systems also found high 

discordance.  For instance, similar to studies comparing interpretations between 

algorithms, this analysis found the highest rate of discordance for NRTI inhibitors.   This 

analysis was also similar to those studies in finding high rates of discordance for 

abacavir, didanosine, stavudine, amprenavir, and lopinavir.  This suggests that these may 

represent areas where genotype tests have large room for improvement and where 

phenotype testing may be a valuable source of information. 

 The analysis also indicated several areas that might warrant re-evaluation for each 

algorithm.  In particular, the HIVdb algorithm stands out in that its interpretations for 

didanosine and amprenavir contribute disproportionately to its rate of discordance.  This 



suggests that it may be beneficial to re-inspect the rules for these two drugs to make sure 

they are updated and take into account relevant phenotypic information.  

 Various factors may contribute to the discordances observed.  NRTI drugs may 

have especially high rates of discordance between genotype and phenotype results as well 

as between genotype algorithms because this drug class has demonstrated the most cross-

resistance.  Genotype algorithms may therefore have trouble interpreting the various 

mutation interactions (11).  Abacavir and lopinavir may have high rates of discordance 

because these are the two drugs with the least data available, so algorithms may not take 

into account all mutations or combinations of mutations (22). 

 This analysis suggests that phenotype tests provide a great deal of information 

that could be used to improve all three of these algorithms.  Further analysis is 

recommended examining specific mutation patterns contributing to the discordance.  

These mutation patterns may shed light on how these algorithms can be improved to 

better interpret sequence data.   
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