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Three Recently Developed Algorithms for Aligning Distantly Related Proteins 

 

Introduction 

The rate at which new protein sequences are discovered has long outpaced the 

rate at which those proteins are experimentally assigned functions.  To speed the process 

of function assignment, protein sequences with unknown functions can be compared to 

sequences with known functions.  If two protein sequences are shown to be highly related, 

then it follows that the protein functions may be closely related as well (Domingues et. al 

2000). 

Early sequence alignment algorithms such as Smith-Waterman and BLAST 

focused on comparing the residue sequences only in making alignments.  However, 

function may be conserved even in sequences that appear to have diverged.  Much recent 

effort has been devoted to developing algorithms that align distantly related proteins, also 

known as remote homologues.  The three algorithms discussed in this paper consider 

three separate approaches to this alignment problem.  The three algorithms are the 

Structure-Dependent Sequence Alignment, a hybrid Iterative-Parametric approach to 

suboptimal alignment, and the amino acid property-based Proximity Correlation Matrix 

alignment. 

 

Structure-Dependent Sequence Alignment 

Previous studies have shown that structural motifs in related proteins often remain 

highly conserved even in the presence of significant divergences in sequence 

(Jaroszewski et. al 2000).  Therefore, integrating structural data generally leads to more 

accurate protein sequence alignments than using sequence data alone, especially for 

distantly related proteins.  Structural alignment is frequently cited as the “gold standard” 

for sequence alignment (Sunyaev et. al 2004).  Since protein structure and function are 

closely related, it is no surprise that a protein’s amino acid sequence is much easier to 



determine than the protein’s structure, such that the number of known protein sequences 

far outstrips the number of known protein structures (Jaroszewski et. al 2000).  Unless the 

structures of both the query and template proteins are known, structural alignments 

cannot be conducted.  The Structure-Dependent Sequence Alignment, or SDSA, 

algorithm attempts to bridge this gap (Yang 2002). 

SDSA is a sequence-structure alignment algorithm that is adapted from the 

Needleman-Wunsch global sequence alignment algorithm.  The Needleman-Wunsch 

algorithm can be expressed with the following equation: 
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  (Eq. 1) 

D is the sequence-sequence amino acid substitution matrix, where Dij is the score for 

substituting the template residue at position j with the query residue at position i.  H is the 

scoring matrix, where Hij is the maximum score for all sequences rooted at (i, j).  Na and 

Nb are the number of residues found in the query and template sequences, respectively.  

The function g((i, j)(k, j+1)) is the penalty for inserting a gap in the query sequence, 

whereas g((i, j)(i+1, k)) is the penalty for deleting a subsequence in the template.  The 

formulae for determining g in SDSA will be discussed later.  The maximal value in H 

indicates the best alignment, and the entire alignment can be obtained by traversing H 

diagonally downward from left to right, where position (1, 1) represents the top left 

corner of H (Yang 2002). 

At the core of SDSA is the construction of a structure-based amino acid 

substitution matrix D.  Since the structure of the template sequence is known, residue j in 

the template sequence can be identified as belonging to an α-helix, β-strand, or coil 

region.  Thus, the following conditional equations were developed for D: 

  [ ] jiijjij wfPAqD ++= )(α    when residue j belongs to an α-helix     (Eq. 2a) 

 or  [ ] jiijjij wfPBqD ++= )(β    when residue j belongs to a β-strand     (Eq. 2b) 

 or  )(cfPCD iijij +=                   when residue j belongs to a coil region. (Eq. 2c) 

A, B, and C are amino acid substitution matrices for residues in α-helices, β-strands, and 

coil regions, respectively.  Yang used a database of protein structure fragments to obtain 



170,673 pairs of local structure alignments, which consisted of 503,466, 1,130,201, and 

516,046 pairs of aligned α-helices, β-strands, and coil regions, respectively.  By 

processing these pairs with the Protein Informatics System for Modeling (PrISM.1) 

structural alignment procedure also developed by Yang and utilizing formulas used by 

Henikoff and Henikoff (1992) to derive the BLOSUM substitution matrices, the A, B, 

and C matrices were constructed (Yang 2002). 

The functions Pi(x) in Equation 2, where x is α, β, or c, represent the log-odds 

probability that amino acid i will be found in an α-helix, β-strand, or coil region, 

respectively.  These probabilities were derived from the pairings generated for the A, B, 

and C substitution matrices above.  The general formula for Pi(x) is: 
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where ni(x) is the number of amino acid type i found the sequences of structure type x, ni 

is the number of amino acid type i found in the total set of residues from all pairings, n(x) 

is the number of residues found in all pairings of type x, and n is the total number of 

residues found in all pairings.  The numerator ni(x)/ ni can be interpreted as the 

probability that a given amino acid type i will be found in structure type x, while the 

denominator n(x)/n can be interpreted as the probability that a random amino acid will be 

found in structure type x (Yang 2002). 

Parameters q, f, and wj in Equation 2 are user specified.  Parameter q is a measure 

of whether residue i is exposed to solvent or buried.  The residue is considered buried if 

less than 20% of its surface area is exposed to solvent.  The weighting parameter f for the 

log-odds probability should ideally have a value of 1 but is present to allow flexibility to 

improve alignment accuracy.  Parameter f will be determined by using training sets.  

Parameter wj provides extra weight for α-helix and β-strand residues, to differentiate 

them from coil regions.  Although Yang claims that wj can be varied given information 

about the template structure, no explanation was given on how this would be done.  

Parameter wj is generally set to 1 (Yang 2002). 

With the amino acid substitution matrix D now constructed using Equation 2, it 

can be placed in Equation 1.  However, the gap insertion and deletion components of 



Equation 1 also need to be adjusted to take structural considerations into account.  For 

gap insertion: 

)1,()2()1,(),,(( +−−−−−=+ jjcikbajkjig  (Eq. 3) 

where the gap is inserted between positions i+1 and k-1 of the query sequence, and 

residues i and k in the query sequence are matched with residues j and j+1 in the template 

sequence.  Variable a is the gap opening penalty and b is the gap extension penalty.  

Variable c is the penalty for opening a gap when j and j+1 are found inside an α-helix or 

β-strand such that c(j, j+1) = 100 for such a case and 0 otherwise.  The penalty due to c 

prevents gaps from opening within α-helices or β-strands, which generally remain highly 

conserved between related proteins (Jaroszewski et. al 2000).  The deletion equation 

takes on a different form: 

),(*)2(),1(),,(( kjDISTdjkbakijig −−−−−=+  (Eq. 4) 

where the deletion occurs between residues j and k in the template sequence, and residues 

i and i+1 in the query sequence are matched with residues j and k in the template 

sequence.  DIST(j, k) is the distance between alpha carbons of residues j and k, while d is 

an empirically determined parameter.  The DIST penalty prevents large deletions from 

occurring in the template sequence (Yang 2002). 

To test the alignment accuracy of SDSA, Yang first used the algorithm on a 

training set of 412 sequence pairs with known structures to determine optimal values for 

parameters a, b, d, f, and qj, then evaluated the algorithm on a testing set of 1421 

sequence pairs with known structures.  The protein sequences in the training set were 

taken from the SCOP database and had to meet certain requirements.  The pairs had to 

have less than 40% identity base on structural alignment and have a protein structural 

distance (PSD) of less than 1, and the shorter sequence of the pair had to be no less than 

80% in length of the longer sequence.  Also, the pairs had to contain at least two protein 

structural components (e.g. two α-helices, or an α-helix and a β-strand),  and the sequence 

similarity had to be undetectable by PSI-BLAST with an E-value cutoff of 100.  With 

these requirements, pairs in the training set ended up having an average identity of 8%. 

After rigorous testing on combinations of a small set of values for each parameter, the 

optimal values were determined to be q = 1.5, f = 0.6, d = 0.2, a = 0.4, and b = 0.1.  Of 



the five parameters, a, b, and d had the greatest effects on accuracy, while f had a smaller 

effect and q had little effect (Yang 2002). 

To complete the evaluation of SDSA, Yang tested SDSA against PSI-BLAST by 

aligning the 1421 sequence pairs in the testing set using both algorithms.  The testing set 

sequence pairs were taken from PDB and had to meet the same requirements as the 

training set.  The average identity of the training set pairs was 13%, and 96% of all pairs 

had identities less than 30%.  The testing set was divided into four groups based on their 

E-value from PSI-BLAST.  For some E-value e, the groups were divided as follows: e < 

10-6, 10-6 < e < 10-2, 10-2 < e < 10-1, and e > 10-1.  The average pairwise identity of the 

groups were 24%, 18%, 12%, and 7%, respectively.  Using the PrISM.1 structural 

alignment of sequence pairs as the gold standard, alignment quality was measured by S0, 

the ratio of correctly aligned query residues to the total number of query residues (Yang 

2002). 

The evaluation showed that while PSI-BLAST outperformed SDSA in the e <10-6 

group, SDSA was considerably more accurate for all other groups.  The average S0 values 

for PSI-BLAST for the groups, starting with the group having e < 10-6, were 80.4%, 

49.4%, 23.2%, and 8.0%.  For SDSA, the average S0 values were 77.3%, 55.0%, 38.1%, 

and 26.9%.  While the S0 percentages for SDSA are relatively low for the latter groups, 

they still represent a large improvement over alignment using PSI-BLAST alone (Yang 

2002). 

Rather than attempt to determine the E-value at which a user should switch 

between using PSI-BLAST and SDSA, Yang developed a simple hybrid approach that 

uses both algorithms and delivers performance that is better than that of using either 

algorithm by itself.  This hybrid approach is a global structure-based sequence alignment 

algorithm.  First, the query and template sequences are aligned using iterative PSI-

BLAST.  The resulting alignment is then translated into a 2D matrix V, where Vij = 1 if 

query residue i is aligned to template residue j, and 0 otherwise.  The modified amino 

acid substitution matrix D’ is then constructed as follows: 

ijijij VDD +='    (Eq. 5) 

where i is the query residue at position i, j is the template residue at position j, and D is 

the structure-based substitution matrix constructed using Equation 2.  D’ is then used in 



place of D in Equation 1.  Running this hybrid approach on the testing set returned 

average S0 values of 83.6%, 61.1%, 42.2%, and 27.4% for the four groups, all of which 

are higher than the percentages reported above for PSI-BLAST and SDSA run alone.  

SDSA is thus a valid extension to PSI-BLAST (Yang 2002). 

 

Hybrid Iterative-Parametric Suboptimal Alignment 

It may be possible to enumerate and evaluate all possible sequence alignments if 

the query and template sequences are both short.  However, as the sequences lengthen, it 

quickly becomes unfeasible due to limitations in both time and space to examine the 

entire search space of possible alignments.  For near optimal sequence alignment, being 

able to effectively limit the search space to likely alignment candidates greatly reduces 

the amount of computational time and space required to find an acceptable suboptimal 

alignment by focusing the search.  The goal of a search space limiting algorithm is to 

generate a set of suboptimal alignments that contains one or more alignments that is 

“better” than the optimal alignment generated by a sequence alignment algorithm, a 

situation that can often occur for distantly related proteins.  Jaroszewski, Li, and Godzik 

present two general methods for generating sets of suboptimal alignments, then 

demonstrate that a hybrid of the general methods returns better sets of suboptimal 

alignments. 

The immediately apparent problem is that a set of alignments is useless unless the 

“best” alignment in the set can be identified.  One possible approach to this identification 

is to build protein models for all the alignments in the sets and then to determine and 

compare the self-threading energy of each model.  An implementation of this 

methodology by the Jaroszewski group called the Multiple Model Approach was used to 

evaluate the performance of the search space limiting algorithms discussed in this section 

(Jaroszewski et. al 1998). 

The first of the two general near-optimal sequence generating methods is called 

iterative elimination.  It modifies alignment algorithms that generate sequence-sequence 

amino acid substitution matrices, such as such as Needleman-Wunsch, for suboptimal 

alignment.  Jaroszewski uses the term “similarity matrix” rather than amino-acid 

substitution matrix.  The two matrix types appear to be analogous, although there are 



some differences.  The sequence-sequence similarity matrix can apparently be 

constructed from a substitution matrix and dynamic programming.  Like an amino-acid 

substitution matrix, the similarity matrix measures similarity between pairs of query and 

template residues.  However, while a high value in the substitution matrix indicates a 

valid substitution, a low value in the similarity matrix apparently indicates high similarity 

between residues.  The iterative elimination algorithm begins by building a similarity 

matrix with the selected alignment algorithm.  The best alignment (lowest sum) is 

determined by traversing the similarity scores in Needleman-Wunsch fashion, and this 

becomes the first alignment in the set of found alignments.  The iterative algorithm 

continues by adding a value ∆ to all cells in the similarity matrix visited by the first found 

alignment.  The new best alignment is determined and added to the set of found 

alignments, and a slightly smaller ∆ value is added to all cells visited by the second found 

alignment.  Repeating this procedure yields additional suboptimal alignments.  Gradually 

reducing ∆ prevents suboptimal alignments from diverging too far from the initial 

“optimal” alignment, where a good starting ∆ value is ¼ the average absolute value of the 

similarity matrix values (Jaroszewski et. al 2002). 

The second of the general sequence generating methods is called the parametric 

approach.  The approach is based on observations that changing alignment parameters, 

such as gap opening and extension penalties or weighting constants used to calculate the 

similarity (or substitution) matrices, will alter the resulting alignment of remote 

homologues.  The method consists of aligning protein sequence pairs multiple times 

using different alignment parameters.  The rationale is that there is no single set of 

parameters that will return the best alignment for every combination of protein sequences.  

Therefore, by using multiple sets of parameters rather than a single set, the parametric 

approach will generate sets of alignments that have a higher probability of containing at 

least one improved alignment.  The parametric approach begins with the initial 

generation of an alignment and attached similarity matrix using some alignment 

algorithm.  The parameters are then used to manipulate the similarity matrix, and 

alignments are obtained after each manipulation (Jaroszewski et. al 2002). 

The hybrid approach proposed by Jaroszewski combines the iterative and 

parametric approaches.  First, the parametric approach is applied.  Sets of suboptimal 



alignments are generated by aligning a given protein sequence pair using a single 

combination of non-gap-penalty-related parameters and many combinations of gap-

penalty-related parameters.  Since small adjustments to the gap parameters produce large 

changes in alignment, each set contains highly varied alignments (Shibuya and Imai 

1997).  The best alignment and accompanying similarity matrix is determined from each 

set, and further alignments are obtained from the similarity matrices by applying the 

iterative elimination method. 

To test the effectiveness of the three approaches above, the authors isolated 742 

protein pairs from the SCOP database.  The pairs had ~45% identity or less.  All three 

methods require an initial alignment and similarity matrix, so the profile-profile 

alignment algorithm Fold and Function Assignment System (FFAS) developed by the 

Jaroszewski group was utilized (Rychlewski et al. 2000).  Upon alignment of a protein 

sequence pair, FFAS returns a z-score, which can be related to the global sequence 

similarity of the protein pair.  According to the authors, a z-score of 14 or higher 

indicates a high degree of similarity, such that suboptimal alignments would not show 

improvement over the initial optimal alignment.  Scores between 14 and 7 indicate a 

moderate degree of similarity, although the alignment accuracy may be low.  Scores 

between 7 and 2 correspond to low similarity pairs which require additional information 

for accurate alignments.  Finally, Jaroszewski asserts that scores below 2 cannot be 

aligned with currently available methods.  The 742 SCOP protein pairs were divided into 

four groups based on each pair’s FFAS z-score.  The authors determined that the 

moderately similar protein pairs with z-scores between 14 and 7 would stand to gain the 

most improvement through use of the suboptimal alignment methods, and the test results 

for these pairs only were reported. 

The testing procedure for the iterative elimination approach was exactly as 

described before, using FFAS to perform the initial alignment and then penalizing the 

similarity matrix using the last found alignment during each iteration.  1000 iterations 

were performed on each sequence pair as ∆ was reduced from ¼ the average absolute 

value of the similarity matrix values to 0.01.  The testing procedure for parametric 

approach also began with an FFAS alignment.  The similarity matrix was calculated with 

the following formula: 



ijijijij LBPSim λβ ++=   (Eq. 6) 

where Simij is the similarity value between the query residue at position i and the 

template residue at position j, Pij is the FFAS profile-profile matching term for the two 

residues, Bij is the “burial term” for the two residues taken from a Jaroszewski threading 

algorithm, and Lij is the “local propensity term” for the two residues taken from a 

Jaroszewski threading algorithm.  β and λ are weighting parameters.  Each of the four 

parameters (β, λ, and the gap opening and extension penalty parameters) could take on 

one of four values, such that each sequence pair was processed 256 times using the 

parametric approach. The exact nature of a “burial term” or a “local propensity term” is 

not as important as the demonstration that varying the parameters will alter the score for a 

given alignment and thus change the best (lowest scoring) alignment for different sets of 

parameter values.  Most likely any parameter-using procedure that generates similarity or 

substitution matrices, such as Yang’s D matrix generating equations from Equation 2, can 

be adapted for use in the parametric approach.  As for the hybrid approach, the 

alignments generated by the parametric approach were divided into groups, and the best 

alignment from each group was processed using the iterative elimination method to 

generate further suboptimal alignments.  A single sequence pair would generate 

approximately 4000 suboptimal alignments in all (Jaroszewski et. al 2002). 

Within each approach, repeats of previously obtained alignments were discarded.  

As a result, the average number of unique alignments obtained for the iterative, 

parametric, and hybrid approaches were 275, 499, and 733, respectively.  Of these unique 

alignments, the percentage that showed “significant improvement” when compared to the 

initial optimal alignment were 35%, 34%, and 48%.  Significant improvement is defined 

as a 25% or greater reduction in root mean square distance (RMSD) when compared to 

the initial alignment and equal or greater contact map overlap (CMO), or a 25% or 

greater CMO increase accompanied by equal or less RMSD.  In summary, each 

alignment of moderately similar sequence pairs generated by the iterative elimination or 

parametric approaches was significantly improved about 1/3 of the time, while the hybrid 

approach produced significantly improved alignments about ½ of the time.  Thus, of the 

three approaches, the hybrid approach most effectively reduces the alignment search 

space (Jaroszewski et. al 2002). 



 

Proximity Correlation Matrix Alignment 

Structural considerations play an important roles in both SDSA and the Iterative-

Parametric algorithms.  In SDSA, structural patterns are integrated into the amino acid 

substitution matrix, while protein modeling is required to identify the best alignment in 

the set of alignments isolated by the Iterative-Parametric algorithm.  Structure, however, 

is not the only factor that can be used to find good suboptimal alignments.  The Proximity 

Correlation Matrix (PCM) algorithm designed by Grigoriev and Kim uses amino acid 

properties along with real or predicted secondary structures to perform the sequence 

alignment and identify distantly related proteins. 

In designing PCM, Grigoriev and Kim made two simplifying assumptions.  First, 

they assumed that local interactions around a particular residue in a given sequence 

strongly correlate with the local interactions for the corresponding residue in a remote 

homolog.  Second, they assumed the conservation of the sequential arrangement of 

physical properties around a particular residue in a given protein sequence with the 

arrangement around the corresponding residue in a remote homolog.  That is, the physical 

properties within a small window of residues surrounding corresponding amino acids in 

the two homologues should be highly similar.  Five physical properties were considered: 

hydrophobicity, volume, normalized frequencies of α-helix, normalized frequencies of β-

sheet, and relative frequency of occurrence.  Of these five, using hydrophobicity returned 

the best results (Grigoriev and Kim 1999). 

The assumptions made above allowed the proximity correlation matrix to be 

constructed.  The correlation score corr for a physical property p was calculated over a 

window of size L for matched query residue i and template residue j, where i and j are at 

the center of their respective windows and L = 2l +1, with l being the number of amino 

acids sequentially ahead and behind the central residue to be included in the window.  

Then:  
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i

p  and 
j

p  are the average property values in the residue i and j windows, 

respectively, and iσ and jσ  are the property standard deviations for those windows, 



respectively.  To reduce the probability that high correlations will appear by chance, 

correlation values are meaningful only when residues i and j belong to the same type of 

secondary structure.  When real secondary structures are not available, they should be 

approximated using a secondary structure prediction algorithm (Heringa 2000).  The 

correlation score for (i, j) is set to zero otherwise.  The overall correlation score for an 

entire alignment is calculated by using the classic Needleman-Wunsch algorithm on the 

correlation matrix.  Next, the overall correlation score Sqt between a query sequence q 

and target sequence t is converted into a Z-score as follows: 

sqqtqt SSZ σ/)( −=  (Eq. 8) 

where qS  and sσ are the average score and standard deviation for alignments between the 

query and all targets.  To determine remote homologues for a given query sequence, the 

Z scores for alignments between the query and all targets are arranged by increasing Z 

scores and the following heuristic is used: 

Zcutoff = Zi   if   Zi – Zi+1 > ε   and   Zj – Zj+1 ≤ ε   

 for any  j > i  and  Zj > 0  and  ε is some constant   (Eq. 9) 

where the target sequences in alignments having Z-scores greater than Zcutoff are 

considered remote homologues of the query.  When ordering Z-scores for alignments 

involving a particular query sequence, the Z-scores tend to clump, with large gaps 

appearing between clumps.  The heuristic identifies the first gap that is at least ε units and 

delimits that gap as the separator between remote homologues and non-remote 

homologues (Grigoriev and Kim 1999). 

To test the PCM algorithm, Grigoriev and Kim selected representative (query) 

proteins from 64 fold families found in the SCOP database.  1390 protein sequences were 

obtained from the SCOP and FSSP databases, where the identity between any two of 

these sequences was 25% or less.  At least three remote homologues for each of the 64 

representative proteins were present in the 1390 protein testing set, and 420 remote 

homologues were present in all.  Both real and predicted secondary structures were used 

to generate the correlation matrices during testing.  With ε set to 0.9, the number of true 

remote homologues found with PCM using real and predicted secondary structures were 

178 and 167, respectively.  PCM was able to identify more than 40% of remote 



homologues in both cases.  PCM was also tested against PSI-BLAST using the 64 

representative proteins and 420 remote homologues as queries.  PSI-BLAST did a better 

job identifying remote homologues when sequence identities were greater than 15%, 

while PCM was more accurate when sequence identities dropped below 15%.  PCM is 

thus another possible extension to PSI-BLAST (Grigoriev and Kim 1999). 

 

Analysis and Conclusions 

Of the three algorithms, which is best?  Space and time considerations do not play 

a part, as they are equal for all three algorithms.  Since the most expensive step in each 

algorithm appears to be the construction of the MxN substitution/similarity/proximity 

matrix, where M and N are the lengths the sequences being aligned, the space cost is 

O(MN).   The construction of each cell in the matrix requires constant-time lookup in 

some other matrix or database, so the running time is also O(MN).  In actuality, each 

algorithm has its own strengths and weaknesses, so deciding on which algorithm to use 

differs depending on the situation. 

SDSA is able to at least partially align protein pairs that have very low sequence 

identity.  For example, it was able to correctly align an average of 26.9% of residues in 

sequences that had an average identity of 7%, and the percentage of correctly aligned 

residues rapidly increased as sequence identity increased.  SDSA is thus able to detect 

very weak relationships between distantly related proteins.  However, SDSA also 

requires that the template protein structure be known.  If the template structure is 

unknown and cannot be accurately predicted, then SDSA cannot be used to perform the 

sequence alignment.  The applicability of SDSA is therefore limited by the availability of 

structural information. 

The Iterative-Parametric suboptimal alignment approach requires that protein 

sequences have moderate sequence identity in order to limit the search space effectively, 

as concluded by the algorithm’s authors themselves.  The approach is not useful for 

directly aligning very distantly related proteins, because the approach’s success is highly 

dependent on an accurate initial alignment, a requirement that can be difficult to achieve 

for very remote homologues.  On the other hand, since the Iterative-Parametric approach 

does not require any secondary structure information on either the query or template, the 



approach can be applied to any sequence pair (with the caveat that not all returned 

alignments may be accurate).  Consequently, the Iterative-Parametric approach has a 

lower accuracy but larger domain than SDSA.  The ideal situation to use this approach is 

when the sequence pair has moderate identity and no structural information is known for 

the pair.  Moreover, since the main factor limiting the effectiveness of this approach is 

the need for a decent initial alignment, the approach seems to be a good choice for 

refining a fairly accurate alignment generated by a separate algorithm.  For example, 

SDSA could be used to perform the initial alignment on a set of very distantly related 

proteins.  This initial alignment could then be further processed and refined by using the 

Iterative-Parametric approach. 

PCM is also able to identify very distantly related proteins, as it was able to 

perform better alignments than PSI-BLAST when sequence identity dropped below 15%.  

Unfortunately, the domain of PCMs is even more restricted than that of SDSA.  First, 

PCM requires secondary structures for both sequences in a sequence pair.  Second, PCM 

can only identify homologues for a query sequence when the query is aligned with a 

group of target sequences.  In other words, sequence alignment quality for a single 

alignment between a query and target cannot be determined, as Zqt and Zcutoff (Eqs. 8 and 

9) have no meaning for the single alignment.  To determine whether or not an alignment 

between a query and target is a good alignment, PCM must compare that alignment to all 

other alignments involving the query sequence.  Furthermore, in edge cases where the 

target sequences are all remote homologues or all not remote homologues, PCM may 

return a considerable number of false positives or negatives.  Application of PCM is thus 

limited to alignments where the secondary structures of both query and targets are known 

or can be predicted, where there are multiple targets to be aligned, and where the target 

sequences consist of a mix of remote homologues and non-remote homologues.  PCM 

alignments could probably also be refined using the Iterative-Parametric approach. 

Without the ability to perform straightforward sequence-sequence alignments to 

align distantly related proteins, researchers have had to exercise their creativity and 

biological know-how to the fullest.  The three algorithms presented in this paper provided 

three different avenues to tackle this alignment problem.  That each algorithm operates 

optimally only under specific conditions underscores the complexity and difficulty of the 



remote homolog alignment problem and guarantees that it will be the focus of 

considerable future research. 
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