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Introduction 
 
For my course project I chose to explore docking software and its application to virtual 
screening.  While there are many good reviews in the literature on docking software (e.g. 
Schneider, 2002), I wanted to supplement this material with some firsthand experience.  I 
was able to gain access to three commercial docking programs, and while the software is 
both sophisticated and complex, was able to make reasonable strides toward exploring 
the potential of the software.  My experiments also uncovered some of the challenges in 
implementing this software in a larger virtual screening environment. 
 
Virtual screening is of interest in the pharmaceutical industry because it provides one 
mechanism for addressing a key question: which of the compounds at an organization’s 
disposal make the most sense to run in a physical screen (Lyne, 2002).  Since it would be 
both cost and time prohibitive to run what could literally represent hundreds of thousands 
of compounds, the idea of reducing the potential list through in silico or virtual screens 
using a computer is attractive.  Several approaches have been taken in virtual screening.  
The concept of a compound being “drug-like” has received a lot of attention, e.g. 
Lipinski (2000) who initiated what has now become renowned as the “Rule of 5”, Veber 
(2002) who has characterized molecule descriptors that help predict bioavailability, and 
other descriptor based work exploring the prediction of ADME/Tox properties.  These 
methods are typically based on the physical characteristics of compounds, e.g. molecular 
weight or number of rotatable bonds, and are often made in the absence of information 
related to the potential target protein.  This type of virtual screening is often applied 
successfully in concert with docking (Schneider, 2002).  Docking, on the other hand, 
specifically examines the protein target that a small compound ligand or another protein 
might interact with and attempts to predict the binding affinity.  While docking 
algorithms have a significant Chemistry or Physics bend to them, the concept is 
absolutely critical in Biology – simply put, proteins function when they are bound to 
other molecules (Halperin, 2002).  Most of the current docking work and reviews have 
focused on protein-ligand docking as a starting point due to its lower complexity. 
 
Materials and Methods 
 
Selection and Preparation of Test Molecules 
 
Since I wanted to gain some hands-on experience with docking software, I needed a set 
of molecules with known indications to experiment with.  While the concept of virtual 
screening usually implies large datasets, I was looking for a smaller set of compounds 
that would be more manageable and would not consume a lot of time or computer 
resources to evaluate.  An article by Stahl and Rarey (2001) provided such a test bed, 



since SMILES strings (Weininger, 1988) for many of the studied compounds were 
published as a supplement to the article.  I used a scanner to scan in the strings, made a 
few corrective edits, and then used the Concord program available under the Sybyl 
package (Tripos) to convert the SMILES strings into single 3D conformations in mol2 
format.  While Concord complained about the valence of some of the published strings 
(and many of the other compounds from the paper were not published since they were 
proprietary), I was able to create a test set of known inhibitors with the following 
distribution: 
 
Protein Target Molecule Count 
Estrogen Receptor 30 
MAP Kinase p38 10 
Thrombin 50 
COX-2 10 

 
This same set of 100 SMILES strings was passed to the Omega software package to 
generate the multiconformer libraries used by the FRED docking software (OpenEye 
Scientific Software).  Although the SMILES format is a common standard, Omega was 
not able to process 16 of the strings.  The test bed for the FRED program runs, therefore, 
was comprised of 84 molecules, 49 of which Stahl had collected from the literature as 
known thrombin inhibitors. 
 
Preparation of Target Structures 
 
While I was going to be dealing with three different docking software packages and three 
separate protein targets, my preparation of the targets initially followed the same strategy 
– loading a PDB structure (Berman, 2000) that was bound to an inhibitor into the Sybyl 
package and isolating an active site box that surrounded the reference molecule by 6.5 
angstroms.  A mol2 file describing the active site box was fed directly into the FlexX 
(Tripos) and FRED software.  The GOLD software (Tripos) could not work with the 
mol2 format directly, so I converted the Sybyl file to a simple list of atoms for those runs.  
Hydrogens also had to be explicitly added to the PDB files for the GOLD runs since it 
uses an all-atom model, and the bound reference inhibitor was removed using Sybyl since 
documentation did not state explicitly if it would be ignored.  I followed Stahl’s lead in 
selecting PDB files for the estrogen receptor (1ERR) and thrombin (1DWD), although his 
paper mentions several processing steps that I could not mimic (due to both lack of 
access to proprietary software or my limited Chemistry knowledge).  The p38 MAP 
Kinase structure used in the literature was proprietary, so I searched PDB for published 
structures and chose 1OUK.  (The COX-2 inhibitors were added to the test molecules 
simply as negative test cases and to round the number of test molecules up to an even 
100.) 
 
Docking Software and Scoring Functions 
 
Docking is generally viewed as three separate components: the representation used to 
model the ligand and protein interaction, the algorithm used to search the space of 



potential interactions, and a scoring function used to evaluate the quality of the 
interactions (Halperin, 2002).  Because the search method and the scoring function can 
operate independently, you often see papers evaluating various combinations of docking 
software and scoring functions (e.g. Bissantz, 2000).  Another important characteristic of 
docking programs is rigid vs. flexible modeling.  In order to reduce the complexity of the 
problem, i.e. reduce the allowed degrees of freedom to a computationally manageable 
number, proteins are typically treated as rigid structures and the smaller ligand molecules 
are given some limited level of flexibility (Amit Singh, from archived course lecture).  In 
this project, I used the FlexX docking software with both its original and DrugScore 
scoring functions, the FRED software with its native scoring function, and the GOLD 
software with both its default (GOLDScore) and ChemScore scoring function.  The 
characteristics of the individual software packages and the scoring functions are 
discussed briefly below: 
 
FlexX was developed by a research group from Germany (Rarey, 1996) and is distributed 
commercially by Tripos.  The name of the software comes in part from its ability to 
model flexible ligands.  The software uses an incremental construction method that 
samples the conformation space of the ligand and places it incrementally into the active 
site.  The default scoring function for FlexX is an empirical method based on work by 
Bhn (1994) that estimates the free binding energy of the protein-ligand complex.  
DrugScore is a knowledge-based scoring function developed later by members of the 
same German research group (Gohlke, 2000).  It is based on statistical analysis of 
structural information extracted from crystallographically determined protein-ligand 
complexes. 
 
FRED is an acronym for Fast Rigid Exhaustive Docking.  It is an implementation of 
multiconformer docking, meaning that a conformational search of the ligand is first 
carried out, and all relevant low-energy conformations are then rigidly placed in the 
binding site.  This two-step process allows only the remaining six rotational and 
translational degrees of freedom for the rigid conformer to be considered.  The FRED 
process uses a series of shape-based filters, and the default scoring function is based on 
Gaussian shape fitting (Schulz-Gasch, 2003). 
 
GOLD is an acronym for Genetic Optimisation for Ligand Docking.  It uses a genetic 
algorithm to explore the full range of ligand conformational flexibility and allows for 
partial flexibility of the protein target (Jones, 1997).  The original GOLDScore fitness 
function has four primary energy components: protein-ligand hydrogen bonding, protein-
ligand van der Waals, ligand internal van der Waals, and ligand torsional strain.  The 
fitness function parameters are empirical based, and there is also an empirical correction 
to encourage protein-ligand hydrophobic contact.  GOLDScore has been optimized for 
the prediction of ligand binding positions rather than the prediction of binding affinities 
(GOLD user’s manual).  ChemStore was originally developed independently and adapted 
for docking (Baxter, 1998).  It was derived empirically from a set of 82 protein-ligand 
complexes, and unlike GOLDScore, it is optimized based on measured binding affinities.  
Free energy changes during ligand binding are estimated from hydrogen-bonding, 
acceptor-metal, and lipophilic interaction terms.  The final ChemScore value also 



includes a clash penalty and internal torsion term to penalize close docking contacts and 
poor internal ligand conformations. 
 
Results and Discussion 
 
When I set out to explore docking software, it quickly became obvious that both the 
software and the actual docking problem were quite complex.  The project I hoped to 
implement represents what is often referred to as “unbound” docking (Erickson, 2004).  
In unbound docking, one simplifies the challenge somewhat by supplying the software 
with the actual binding site based on a reference molecule and structure.  The problem is 
nonetheless tougher to solve than the “bound” docking problem, where you are “simply” 
looking to dock the reference molecule back to its binding site.  Since I was not dealing 
with the typical large database scenario found in compound screening, my experiments 
could be analyzed as a classification problem where the software was evaluated based on 
its ability to discern members of the set from non-members.  I did not evaluate docking 
accuracy as measured by root-mean-square deviation, but still faced plenty of challenges 
in setting up the various algorithm runs and looking for biological insight to help guide 
them toward reasonable discrimination. 
  
The largest set in the compound test bed contained 50 thrombin inhibitors.  Thrombin 
was already of interest to me as I had used it when evaluating quantitative pattern 
matching in homework 3.  It is a biologically interesting enzyme because of its 
involvement in the blood-clotting cascade with implications for both human victims of 
stroke and sepsis as well as hemorrhagic disease in cattle fed moldy clover hay (Stryer’s 
Biochemistry, 2002).  Since I had isolated the active site using the Sybyl software, the 
first docking software that I evaluated was FlexX.  Using a Receiver-Operator 
Characteristic (ROC) curve below as we did in homework 5, one can see that FlexX with 
its default scoring method did an excellent job of distinguishing the thrombin inhibitors 
from the other molecules: 
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The 30 highest scores from the software are all for thrombin inhibitors, and 45 of the 
known inhibitors (90%) fell in the upper half of the reported scores.  The lowest scoring 
known inhibitor was 72nd in rank order, so I have not graphed scores below that as false 
positives.  In practice, one would want to pick a cutoff score value that would divide the 
predictions into an acceptable balance of false positives vs. false negatives.  Although 
this is a small test set from which to make a call, using a cutoff score of –25 (see attached 
spreadsheet with run details) would give you a precision of 0.93 and a sensitivity/recall of 
0.84.  This cutoff should be dictated by the capacity of physical screening capabilities and 
the beginning population size of compounds.  If you were starting out with tens of 
thousands of compounds, one might have to be even more conservative by attempting to 
eliminate all false positives at the risk of missing good potential leads; using a score of –
26.5 would maximize precision at 1 but reduce recall to 0.72.  Using the alternate 
DrugScore scoring function with FlexX also led to good discernment between known 
thrombin inhibitors and the other compounds.  There were a few additional false positives 
earlier in the ranking of test scores, but one could get both a precision and sensitivity of 
0.92 if one had the capacity to physically screen half of the ranked compound population.  
DrugScore did struggle a little more in picking up a few of the thrombin inhibitors (and in 
fact listed one of the known inhibitors as undockable), but this would have little 
relevance to virtual screening in practice since one would not normally expect to be able 
to set a cutoff score that would include all true positives without being overwhelmed by 
false positives.  FlexX has been studied frequently in the literature, and those findings do 
not contradict its good performance here: Stahl (2001) notes that FlexX performs well 
with its default scoring algorithm for those target-ligand combinations that form a 
significant number of hydrogen bonds, and he includes thrombin in that category.  The 
literature evaluations of DrugScore were a little less consistent, with Gohlke (2000) citing 
superior performance to the default FlexX scoring function, while Stahl (2001) observed 
that the knowledge-based method on average performed worse than its empirical 
counterpart and noted that it could model lipophilic interactions well, but fell well short 
when modeling hydrogen bond interactions. 



 
The second software package that I evaluated was FRED.  As can be seen from the same 
ROC graph above, the default settings for FRED fared worse in its ability to separate out 
the thrombin inhibitors by score.  There were more false positives in the initial 30 
sequences (a total of 5) and then the slope of the line would indicate that the success rate 
for the remaining sequences was roughly equivalent to 50/50 random guessing.  Since 
there were only 84 sequences fed from Omega into FRED (see Materials and Methods 
section), one can also see that several of the positive examples sorted near the bottom of 
the scores in rank order.  Since this was the first time that I had used the FRED software, 
I suspected that at least some component of its inferior performance was due to my 
inexperience.  To explore this, I wanted to examine some of the docking results for 
compounds that scored well in all of the methods.  This idea of consensus scoring has 
been used effectively in the literature to increase the effectiveness of docking (e.g. Clark, 
2002).   The compounds I looked at in detail were designated number 60 and 89 in my 
test set.  Compound 89 had fared well in both the FlexX and FRED runs, receiving the 
highest or next to highest score in both cases.  Compound 60, by contrast, had scored in 
the top 5 using FRED but outside of the top 5 for both of the FlexX scoring functions.  
The docking results for these two compounds and the original reference structure isolated 
from the PDB file are shown below using WebLab ViewerLite (Molecular Simulations 
Inc.). 
 

 
Reference compound from 1DWD PDB file isolated in an active site box. 
 
 



 
 
Test compound 60 docking result in active site box. 
 
 
 

 
 
Test compound 89 docking result in active site box. 
 
These views help illustrate a couple of key points: 1) the docking arrangement of 
compound 89 looks quite similar to that of the original reference compound and would 
seem to justify its high score from the docking algorithms; 2) the docking arrangement of 
compound 60 looks less like the original reference compound - in fact it looks a little 



suspect that the southern most cavity is empty and a portion of the compound is pointing 
north outside of the active site into an area that may be occupied by other portions of the 
target protein.  Further investigation of FRED’s default parameters showed that while I 
was passing in the same representation of the active site box, it was only using a 5 
angstrom diameter in its own calculation of the active site.  Setting an option to increase 
this to 6.5 angstroms (the same as the default for FlexX), produced the following ROC 
curve: 
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The blue line above shows the initial FRED results and the yellow line is the 
improvement achieved by increasing the size of the active site to accurately reflect 
collisions that would occur between compounds and the protein.  While the results are 
not as strong as the FlexX results shown in red, there is still a marked improvement.  
There is only a single false positive among the top 30 ranked scores, and a cut-off score 
of –18200, for example, would achieve a precision of 91% while correctly partitioning 
80% of the true actives.  In practice, after some further refinements by someone with a 
better Chemistry background than myself, I might be tempted to use FRED over even the 
FlexX results due to its efficiency.  FRED running on a cluster of Linux boxes took 
literally only seconds to run while Sybyl/FRED running on an SGI server took several 
hours.  An interesting application of virtual screening where this time difference might 
really pay dividends is in screening virtual libraries.  In this application, not only is the 
target docking done via computer, but the compounds that are being docked are being 
generated virtually on the fly by combining potential pharmacophores onto scaffolds of 
interest (Schneider, 2002).  Setting the scoring threshold very high to limit as many false 
positives as possible might give you the potential to pull out some interesting compounds 
for synthesis from literally millions of simulated compounds.  These thoughts on FRED’s 
efficiency and reasonable results are also supported by evaluations in the literature.  
Schulz-Gasch (2003) suggests that FRED is a good alternative for general use in virtual 
screening because of its speed and notes that it works particularly well when the binding 
mode of the ligand is determined by the overall shape of the binding pocket rather than 



hydrogen bonding.  She notes the estrogen receptor and thrombin to a lesser degree as 
falling into this category. 
 
The final docking software that I evaluated was GOLD, which uses a genetic algorithm 
based search mechanism to examine potential docking combinations.  Results using both 
the default GOLDScore scoring function and ChemScore for the thrombin inhibitor 
example are compared to FlexX below:   
 

Receiver-Operator Characteristic Curve
Thrombin Inhibitor Screen

0

10

20

30

40

50

0 10 20 30 40 50

Number False Positives

N
u

m
b

e
r 

T
ru

e
 P

o
s

it
iv

e
s

FlexX

Gold

ChemScore

 
 
The yellow line representing the default GOLDScore function displays decent results.  
There are only two false positives among the 30 top scores and choosing a cutoff score of 
51 yields a precision of 0.93 while recalling 82% of the positive examples.  FlexX would 
clearly be the algorithm of choice to use here, given also that GOLD took almost 24 
hours to run.  This performance was running on a single Linux processor, and there are 
ways to speed up the performance, e.g. running on a cluster of Linux processors or 
reducing the number of cross-over and mutation operations that ran within each 
generation of the genetic algorithm, i.e. reducing the search space.  Neither of these 
operations, however, is likely to give the GOLD algorithm an advantage over FlexX.  My 
choice of using FlexX over GOLD is not supported by the literature.  Bissantz’s (2000) 
evaluation of multiple docking and scoring function combinations found GOLD to have 
the best docking accuracy, and Kontoyianni (2004) also found GOLD to behave better 
overall than FlexX and its other competitors.  It is very interesting to note, however, that 
both authors mention that the best docking program/scoring function combination is 
highly dependent on the target in question.  While their evaluations did show GOLD to 
be the best overall choice across a broad array of protein targets, FlexX did perform 
favorably for thrombin due to its aptitude for handling hydrogen bonding (Stahl, 2001). 
 
Using the ChemScore function with GOLD produced surprisingly poor results.  One 
would be better off randomly guessing whether each compound was a thrombin inhibitor 
rather than using this model.  I don’t have a firm explanation for why the performance 



was so poor, but if you look at the components of the ChemScore scoring function, my 
suspicion is that it has something to do with the collision term.  Since GOLD uses an all 
atom model where hydrogens are explicitly required, perhaps our binding site is slightly 
off and ChemScore is simply less forgiving than the other studied scoring functions; this 
possibility is indirectly studied in the final example. 
  
While I was happy from the outset with the precision that the docking algorithms were 
displaying for the thrombin inhibitor example, the other two examples that I tried were 
less turnkey.  Stahl mentions that the PDB structure 1ERR that he chose to work with for 
the estrogen receptor was selected because of its open confirmation that could 
accommodate both agonists and antagonists.  This “open confirmation” maybe should 
have served as a warning to me that docking attempts might act promiscuously, for I had 
little luck in my initial attempt with FlexX at achieving anything other than what 
appeared to be no better than random behavior.  Since the estrogen receptor forms a fairly 
large dimer structure, I chose to mark that one up to experience and move on to a MAP 
Kinase example.  My initial attempt at MAP Kinase p38 was as equally unimpressive as 
the estrogen receptor example.  The DrugScore scoring function yielded the best results 
with FlexX, but even that (as can be seen by the red line in the ROC curve below) 
approximated the 1/10 guessing that one would expect by random chance.  
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The negative result with ChemScore at the end of the thrombin inhibitor study actually 
led me to wonder if the issue might fall largely back to not having precisely specified the 
active site.  While FlexX and FRED required an active site box to be fed into the 
software, GOLD offered a few additional ways to define the active site.  A SwissProt 
(Boeckmann, 2003) search for the p38 MAP Kinase annotation identified the active site 
as ASP residue 168.  Specifying this residue as the center of the active site produced the 
above improved GOLD and ChemScore results.  While still not as clear cut as the 
thrombin examples, the improvement to 5 true positives in the top 9 scores (vs. a random 
expectation of 1) demonstrates that even a little biological information can increase the 



effectiveness of the model.  The literature findings on ChemScore are generally luke 
warm.  Verdonk (2003) notes that its speed is significantly faster than the default GOLD 
scoring function, but finds the end results to be quite similar.  Schulz-Gasch (2003) also 
focuses mainly on its speed, and Bissantz (2000) finds it to be poor performer in the very 
type of classification/ranking problem that I am evaluating. 
  
Conclusions 
 
This brief foray into exploring virtual screening via docking has demonstrated its 
potential, but it has also exposed some pitfalls that illustrate the complex nature of the 
challenge.  While several of the programs achieved a high level of both precision and 
sensitivity in identifying known inhibitors to the thrombin target, the reality of the drug 
screening environment would require scanning a much larger database to obtain even a 
few promising hits.  Given a much larger number of sequences to dock, one most likely 
has to make some tradeoffs in quality to increase the quantity of docking that can be 
done, and one would expect the number of false positives to increase, probably 
significantly.  Struggling to get even a classification level problem working across 
several programs and different protein targets illustrates that a sophisticated level of both 
Chemistry and Biology insight are required to function successfully in a real virtual 
screening environment and that these algorithms are by no means “plug-and-play”.  To 
quote Gohlke (2000) directly, “Definition of an appropriate reference state and 
accounting for inaccuracies inherently present in experimental data is required to achieve 
good predictive power.”  Probably the biggest take away from this project for me is that 
no one algorithm or scoring function is currently the best for modeling all protein-ligand 
interactions.  Any debate over whether empirical or knowledge-based scoring functions 
are best seems futile since, as pointed out by Schulz-Gasch (2003), Kontoyianni (2004), 
and several others, the success of a particular program/scoring function combination is 
highly dependent on the nature of the target protein in question, and performing 
preliminary evaluation test runs to pick your best option would be highly recommended.  
And finally, given the large literature base studying what characterizes a drug-like 
molecule, performing virtual screening in isolation from this information and any other 
additional filters would seem unwise. 
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