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1. Introduction 
 
Using proteins as biomarkers has long been considered a promising clinical diagnostics approach for drug 
discovery and development. Some biomarkers, such as prostate-specific antigen, have been in use for many 
years. Many other potential biomarkers are being reported in the literature almost weekly, although few have been 
translated into the diagnostic arena. Progress has not been as rapid as we would like, especially given the 
advances in our understanding of the process by which disease develops and becomes lethal [45]. Bio-software 
has a pivotal role to play here - for e.g., to leverage knowledge gained from work with tumors where the biology is 
known and apply this to the complex proteomics of serum and other body fluids.  
 
In this paper, we analyze the two most popular computer database search algorithms used in protein identification 
but will begin with a few preliminaries and motivation for the analysis.  
 
1.1 Early Detection of Disease 
 
What follows are study results from recent clinical and clinico-algorithmic studies relating to the value of 
biomarkers and the role played by computer algorithms in the early detection of disease. 
 
1.1.1 Clinical study 
 
Heart Disease: Levels of a specific protein biomarker in the blood could predict the risk of heart attack or death in 
those with coronary heart disease. The protein called placental growth factor (PGF) is known to trigger 
inflammation within hardened and narrowed coronary arteries. A recent study [43] suggests that PGF's presence 
could perhaps be used as a 'marker' for prognosis in heart disease. Levels of PGF were measured in a group of 
547 patients with known heart disease. PGF was also measured in another group - of 626 patients presenting 
with acute chest pain in an emergency department. In those with heart disease, elevated PGF indicated an 
increased risk of heart attack or death within 30 days. In those with chest pain, raised PGF meant a three fold 
increased risk of heart attack or death. The study conclude that PGF is indeed a valuable biomarker for heart 
attack or heart death and that therapies targeting the inflammatory action of PGF would be a good approach for 
treating heart disease.  
 
1.1.2 Clinico-Algorithmic studies 
 
Prostrate cancer: The prostate-specific antigen test has been a major factor in increasing awareness and better 
patient management of prostate cancer (PCA), but its lack of specificity limits its use in diagnosis and makes for 
poor early detection of PCA. Identifying better biomarkers for early detection of PCA using protein profiling 
technologies can simultaneously resolve and analyze multiple proteins. Evaluating multiple proteins will be 
essential to establishing signature proteomic patterns that distinguish cancer from noncancer as well as identify 
all genetic subtypes of the cancer and their biological activity. One study [41] used a protein biochip surface 
enhanced laser desorption/ionization mass spectrometry approach coupled with an artificial intelligence learning 



algorithm to differentiate PCA from noncancer cohorts. A blinded test set, separated from the training set by a 
stratified random sampling before the analysis, was used to determine the sensitivity and specificity of the 
classification system. A sensitivity of 83%, a specificity of 97%, and a positive predictive value of 96% for the 
study population and 91% for the general population were obtained when comparing the PCA versus noncancer 
(benign prostate hyperplasia/healthy men) groups.  
 
Ovarian cancer:  Another study [42] used proteomic patterns in serum that distinguish neoplastic from non-
neoplastic disease within the ovary. A training set of spectra derived from analysis of serum from 50 unaffected 
women and 50 patients with ovarian cancer were analyzed by an iterative searching algorithm that identified a 
proteomic pattern that completely discriminated cancer from non-cancer. The discovered pattern was then used 
to classify an independent set of 116 masked serum samples: 50 from women with ovarian cancer, and 66 from 
unaffected women or those with non-malignant disorders. The algorithm identified a cluster pattern that, in the 
training set, completely segregated cancer from non-cancer. The discriminatory pattern correctly identified all 50 
ovarian cancer cases in the masked set, including all 18 stage I cases. Of the 66 cases of non-malignant disease, 
63 were recognized as not cancer. This result yielded a sensitivity of 100% (95% CI 93--100), specificity of 95% 
(87--99), and positive predictive value of 94% (84--99). These findings justify a prospective population-based 
assessment of proteomic pattern technology as a screening tool for all stages of ovarian cancer in high-risk and 
general populations. 
 
1.2 Proteomics 
 
Proteomics is the systematic study of the many and diverse properties of proteins in a parallel manner with the 
aim of providing detailed descriptions of the structure, function and control of biological systems in health and 
disease. Advances in methods and technologies have catalyzed an expansion of the scope of biological studies 
from the reductionist biochemical analysis of single proteins to proteome-wide measurements. Proteomics and 
other complementary analysis methods are essential components of the emerging 'systems biology' approach 
that seeks to comprehensively describe biological systems through integration of diverse types of data and, in the 
future, to ultimately allow computational simulations of complex biological systems.  

 
1.3 Protein Sequencing in relation to DNA Sequencing 
 
Forward Genetics a key element of reductionist research approaches in the 1980s attempted to move from an 
observed phenotype or function to the relevant genes and their products that caused that phenotype.  
 
Reverse Genetics benefited from the advent of large-scale sequencing projects and their results [1] catalyzing the 
development of reverse approaches, which attempted to move from the gene sequence to function and 
phenotype. Such approaches included the observation of clusters of mRNA species showing coordinated 
expression patterns in different cellular states, either by expression arrays or by serial analysis of gene 
expression (SAGE [2]).  
 
The rapid identification of proteins was limited only by our capacity to extract sequence information from proteins 
and peptides, and to correlate this information with the sequence databases. Mass spectrometry and database 
search algorithms fill this gap. 

 
 
 



 
 
 

Figure 1: The current status of proteomic technologies.  
   

The different data typically collected in proteomic research and the available technologies are listed. The relative maturity 
of the proteomic technologies and other key discovery science tools is apparent from the position of the respective 
technology on the graph. 

 
 

2. Protein identification methodology 
 
Broadly, two steps constitute the methodology used to identify proteins - Mass Spectrometry and Database 
Search. A protein mixture is digested, and the resulting peptides are analyzed by MS/MS to obtain experimental 
spectra. Search programs find database candidate sequences whose theoretical spectra are compared to the 
experimental spectrum. The best match (highest-scoring candidate sequence) defines the identified database 
peptide and the corresponding database protein. Validation software then determines whether the peptide and 
protein identifications are true or false. 
 
 

 
 

Figure 2. Overview of the protein identification process. 
 
 
 
2.1 Mass spectrometry 
 
A mass spectrometer measures the mass-to-charge ratio of charged species under vacuum and comprises an 
ionization source and a mass analyzer. In the late 1980s, two methods were developed that allowed the 



'ionization' of peptides and proteins at high sensitivity and without excessive fragmentation. These breakthroughs 
were electrospray ionization (ESI [3]) and matrix-assisted laser desorption ionization (MALDI [4]), which had 
closely followed the development of laser desorption [5-6]. The success of these ionization methods in analytical 
protein chemistry led to the development of commercial mass spectrometers equipped with robust ESI or MALDI 
'ion source' instruments, which rapidly penetrated the protein chemistry community.  
 
The intrinsic mass of a eukaryotic protein is not a uniquely identifying feature. It was quickly recognized, however, 
that the masses of the various peptides generated by fragmentation of an isolated protein with an enzyme of 
known cleavage specificity could uniquely identify a protein. Because peptide ions fragment in a sequence-
dependent manner, the MS/MS spectrum (two stage mass filter that results in  fragment ion spectra) of a peptide, 
in principle, represents its amino acid sequence. Developments in instrument control software facilitated 
computer-controlled ion selection, such that MS/MS spectra could be generated from many peptide ions in a 
given sample without the need for operator intervention, effectively automating the process.  
 
Hunt and co-workers [7] laid the groundwork for a gel-independent approach to proteomics by demonstrating the 
ability of LC-MS/MS systems to handle extremely complex peptide mixtures. Antigen-presenting lymphocytes 
continually digest proteins and present some of the resulting peptides bound to major histocompatibility complex 
(MHC) proteins for immune surveillance. Hunt used immunoprecipitation to isolate the peptide-MHC complexes, 
extracted the antigenic peptides and subjected the complex peptide mixtures to successive LC-MS/MS analyses. 
They also used a specific cytotoxic T cell response as a bioassay to confirm the presence of antigenic peptides in 
each fraction and correlated this functional data with the mass spectrometric data, thereby identifying the 
sequence of the antigenic peptides [8-9].  
 
2.2 Database Search 
 
In 1993, five independent reports were published that described the implementation of this insight in database 
search algorithms [7-11]. These algorithms, together with MALDI-TOF mass spectrometry peptide analysis, 
constituted a 'protein identification' method that is now known as peptide mass mapping (or peptide mass 
fingerprinting PMF). In this type of analysis, the collected 'MS spectra' are used to generate a list of proteolytic 
(peptide) fragment masses, which are then matched to the masses calculated from the same photolytic digestion 
of each entry in a sequence database, resulting in identification of the target protein. The success of this type of 
analysis is dependent on the specificity of the enzyme used (most frequently trypsin), the number of peptides 
identified from each protein species, and the mass accuracy of the mass spectrometer. Owing to its increasing 
sensitivity and ease of use, MALDI-TOF mass spectrometry has become the method of choice for protein 
identification by peptide mass mapping and is commonly used for identifying proteins separated by 2DE. 
 
 

 
 

Figure 3. Quantitative protein analysis from the cell to the identified protein. 
 
The two most common processes for quantitative proteome analysis are shown. In the first (top), 2DE is used to separate 
and to quantify proteins, and selected proteins are then isolated and identified by mass spectrometry. In the second 
(bottom), LC-MS/MS is used to analyze enzyme digests of unseparated protein mixtures, and accurate quantification is 
achieved by labeling the peptides with stable isotope. Both processes are compatible with protein fractionation or 
separation methods, such as subcellular fractionation, protein complex isolation and electrophoresis and chromatography, 
thereby providing additional biological context to the protein samples being analyzed.  

 
The combination of LC-MS/MS and sequence database searching has been widely adopted for the analysis of 



complex peptide mixtures generated from the proteolysis of samples containing several proteins. This approach is 
often referred to as 'shotgun' proteomics, and has the ability to catalog hundreds, or even thousands, of 
components contained in samples isolated from very different sources. A tryptic digest of the proteome of a 
typical human cell will therefore generate a peptide mixture containing at least hundreds of thousands of peptides. 
Even the most advanced LC-MS/MS systems cannot resolve and analyze such complexity in a reasonable 
amount of time. 
 
For proteomic studies applying a forward (function to sequence) approach, determination of the sequence of the 
target proteins is usually a defined end point, because detailed functional analyses of the isolated species 
precede sequence analysis. For studies that apply reverse (sequence to function) approaches, knowing the 
sequence of the proteins in a sample is necessary but not sufficient. Reverse approaches, which are used in 
many proteomic studies, typically involve quantitative comparison of the protein profiles expressed by cells or 
tissues in different states. 
 
The most valuable information on the system being studied is obtained from those proteins that are expressed 
differentially in a matrix of proteins of unchanged expression; therefore, proteomic technologies detecting 
differences in protein profiles need to be quantitative. Unfortunately, peptides analyzed in a mass spectrometer 
will produce different specific signal intensities depending on their chemical composition, on the matrix in which 
they are present and on other poorly understood variables. Thus, the intensity of a peptide ion signal does not 
accurately reflect the amount of peptide in a sample; in other words, mass spectrometry is inherently not a 
quantitative technique. However, two peptides of identical chemical structure that differ in mass because they 
differ in isotopic composition are expected, according to stable isotope dilution theory, to generate identical 
specific signals in a mass spectrometer. 
 
 
 

 
Figure 4. Protein identification using peptide mapping information.  

 
(a) Proteins are digested with an enzyme and the masses of the proteolytic peptides are measured with mass 
spectrometry. (b) In the database search, each protein sequence in the database is digested according to the specificity of 
the enzyme. The masses of the resulting peptides are calculated and a theoretical mass spectrum is constructed. The 
measured mass spectrum is compared with the theoretical mass spectrum and a score qualifying the comparison is 
calculated. The protein sequences in the database are sorted according to the score and the protein sequence with the 
best score is selected.  

 
 

 
 

Figure 5. Information content in the mass of a single tryptic peptide.  
 



For Escherichia coli (~4000 open reading frames [ORFs]), Saccharomyces cerevisiae (~6000 ORFs), and Homo sapiens 
(~100,000 ORFs), at a mass accuracy of 0.5 Da. For S. cerevisiae, the number of proteins at every mass unit is shown 
together with a smooth curve fitted to the data. For E. coli and H. sapiens, only the smooth fits are shown for clarity. 

 
The success of protein identification by peptide mapping is a result of certain characteristics of proteins, including 
the limited number of proteins for each organism, the large differences in amino acid sequence, and the large 
mass difference between different amino acids. The figure above shows the number of proteins in different 
organisms that match the mass of a single tryptic peptide, indicating that a measurement of a few tryptic peptides 
is sufficient for identification of a protein when the genome sequence is available. Recent improvements in 
instrumentation have made it possible to determine peptide masses with a higher mass accuracy, which has 
improved the success rate for protein identification by peptide mapping. Other information that can be used to 
improve the quality of identifications includes amino acid composition, number of exchangeable hydrogens and 
partial amino acid sequence. The searches are usually restricted with additional information, such as species or 
taxonomic category, protein mass, and protein isoelectric point. Although peptide mapping is usually applied to 
pure proteins, the constituents of simple protein mixtures can also be identified by peptide mapping.  
 
Peptide mapping has a high success rate for identifying simple protein mixtures from microorganisms with fully 
sequenced genomes; however, when studying mammals the success rate is presently considerably lower. The 
success rate of peptide mapping will increase in the near future when the human and, soon after, the mouse 
genomes will be completed. In the cases where peptide mapping does not provide sufficient information for 
confident identification, it is necessary to obtain more information. The most common method is to isolate ions 
corresponding to a proteolytic peptide in the mass spectrometer, fragment them by collisional excitation, and 
measure the masses of the fragment ions to obtain partial sequence information. The measured fragment mass 
spectrum is compared to theoretical mass spectra calculated from the protein sequences in the database [22-23]. 
 

3. Complexity comparison: Proteomics vs. Genomics 
 
In comparison to its nucleic acid–based counterpart, genomics, the experimental complexity of proteomics is far 
greater. The technology is also not as mature and, owing to the lack of amplification schemes akin to PCR, only 
proteins isolated from a natural source can be analyzed. Proteomic analyses are therefore generally limited by 
substrate. The complexities of the proteome arise because most proteins seem to be processed and modified in 
complex ways and can be the products of differential splicing; in addition, protein abundance spans a range 
estimated at five to six orders of magnitude for yeast cells [12] and more than ten orders of magnitude for human 
blood serum—for example, from interleukin-6 at 2 pg/ml [13] to albumin at 50 mg/ml [14]. Thus, the relatively low 
number of human genes predicted from the genome sequence [15-16] has the potential to generate a proteome 
of enormous and as yet undetermined complexity. 
 
 

 
 

Figure 6. Quantitative proteomics and informatics. 
 

Brief descriptions of the informatics requirements for each of the processes of biological analysis are listed. Handling 
these data requires significant computational infrastructure if it is to be carried out repeatedly on a large scale. Many of 
the algorithms used in the process are still not mature. 

 
 

4. Database Search 
 



Of the two steps used in Protein Identification, in this paper as mentioned in Section 2, we will critically analyze 
the components of the second step - Database Search.  
 
An unintended consequence of whole-genome sequencing has been the birth of large-scale proteomics. What 
drives proteomics is the ability to use mass spectrometry data of peptides as an 'address' or 'zip code' to locate 
proteins in sequence databases. Two mass spectrometry methods are used to identify proteins by database 
search methods. The first method uses a molecular weight fingerprint measured from a protein digested with a 
site-specific protease [1-5]. A second method uses tandem mass spectra derived from individual peptides of a 
digested protein [6-7]. Because each tandem mass spectrum represents an independent and verifiable piece of 
data, this approach to database searching has the ability to identify proteins in mixtures, enabling a rapid and 
comprehensive approach for the analysis of protein complexes and other complicated mixtures of proteins [6,8-
12]. New biology has been discovered based on fast and accurate protein identification [13-18]. As tandem mass 
spectral protein identification has proliferated, it has become increasingly important to understand the rationale of 
individual database search algorithms, their relative strengths and weaknesses, and the mathematics used to 
match sequence to spectrum. 
 
 
4.1 Database Search Query 
 
Experimental mass spectra of peptides are the main input to the database query. They are of two types - Peptide 
Spectra and Peptide Fragmentation Spectra. 
 
4.1.1 Peptide mapping spectra 
The simplest and most obvious scoring method for peptide mapping is to count the number of measured peptide 
masses that correspond to calculated peptide masses in the theoretical mass spectrum of each protein in the 
database. Several software tools are available on the Internet that use this method of ranking the proteins in the 
database according to the number of matching peptides, for example, PepSea [24], PeptIdent/MultiIdent [25 and 
26], and MS-Fit [27]. This simple scoring method works well for high-quality experimental data, but has the 
disadvantage that it usually gives higher scores to larger proteins because the probability of random matching is 
higher. More sophisticated methods for identifying proteins are all based on counting the number of measured 
peptide masses that correspond to calculated peptide masses but they attempt to make better use of the mass 
spectrometric information compensating, for example, for effects of protein size [28, 29, 30, 31 and 32]. This 
usually leads to methods that are more selective and sensitive. 
 
MOWSE [28] (http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse and also implemented in MS-Fit at 
http://prospector.ucsf.edu/ucsfhtml3.2/msfit.htm) uses average properties of the proteins in the database to 
improve the sensitivity and selectivity of the identification. It takes into account the relative abundance of the 
peptides in the database when calculating the score, that is, the chance of getting a random match to a larger 
peptide is lower and therefore it will contribute to a higher degree to the score. Also the protein size effect is 
compensated for. 
 
ProFound [29] is an expert system for protein identification using Bayesian theory to rank the protein sequences 
in the database by their probability of occurrence. It takes into account detailed information about each individual 
protein sequence in the database and allows for incorporation of additional experimental information (e.g. amino 
acid composition or sequence information) when available. In addition, empirical information about patterns 
observed for the distribution of proteolytic peptides along the protein sequence is included in the algorithm. One 
advantage of the Bayesian approach is that different types of information can be included in a natural way and 
therefore it is possible to make optimal use of all available information and increase the sensitivity and selectivity 
of the algorithm. ProFound can also be used to identify simple protein mixtures. A two-step approach is used 
where first the proteins in the database are ranked according to how well they match the experimental data 
assuming a single protein is present. In the second step, the top ranking proteins are fused together pairwise, in 
groups of three, and so on. These fusion proteins are then ranked according to how well they match the 
experimental data. 
 
Mascot [30] is based on the MOWSE algorithm but in addition it uses probability-based scoring. The probability 
that the observed match between experimental data and a protein sequence is a random event is approximately 



calculated for each protein sequence in the database. The proteins are then ranked with decreasing probability of 
being a random match to the experimental data. 
 
PeptIdent2 [32] is an algorithm that has been optimized using a genetic algorithm. PeptIdent2 is a generic 
algorithm with many coefficients and does not incorporate any knowledge about protein properties. The 
coefficients are optimized using a training set of protein mass spectra. This is a very different approach than that 
of ProFound, MOWSE, and Mascot, where the algorithms are based on either our knowledge of the properties of 
individual proteins or database averages. 
 
4.1.2 Peptide fragmentation spectra 
 
In contrast to mass spectra of peptide maps, which contain global information about a protein, peptide 
fragmentation mass spectra contain rich information on a small section of a protein. The information on the 
sequence of each peptide enables the identification of a protein from a single peptide. This allows searching of 
databases that contain incomplete gene information, for example, expressed sequence tags (ESTs). The use of 
peptide fragmentation mass spectra is also the method of choice for identifying complex protein mixtures. There 
are several approaches to using peptide fragment information for protein identification. 
 
PepSea [24] uses information from fragmented proteolytic peptides. First, a peptide sequence tag has to be 
extracted. A peptide sequence tag is a short partial amino acid sequence of a proteolytic peptide together with 
information of the mass of the peptide and the masses of the parts of the peptide that have not been sequenced. 
This approach is very fast but requires extraction of the peptide sequence tag prior to searching. 
 
SEQUEST [33-36] uses data from un-interpreted peptide fragment mass spectra (i.e. the information from the 
whole mass spectrum is used). A cross-correlation function is calculated between the measured fragment mass 
spectrum and the protein sequences in the database. The cross-correlation function is used to score the proteins 
in the database. SEQUEST supports the use of information from several fragment mass spectra in the database 
search. This approach does not require extraction of any information from the mass spectra but the searches are 
time consuming. 
 
PepFrag [37] and MS-Tag [27] use peptide fragment mass information in combination with other mass 
spectrometric information, such as amino acid composition, to identify proteins. 
 
Mascot [30] (http://www.matrixscience.com/cgi/search_form.pl?SEARCH=MIS) uses the same probability-based 
scoring algorithm for fragment information as for peptide maps. It also supports the use of information from 
several fragment mass spectra in the database search. 
 
4.2 Database Search Algorithms 
 
Four basic approaches have been developed to model matches to sequences [37]: 
 
4.2.1 Descriptive models  
 
Descriptive algorithms are based on a mechanistic prediction of how peptides fragment in a tandem mass 
spectrometer, which is then quantified to determine the quality of the match between the prediction and the 
experimental spectrum. Mathematical methods such as correlation analysis have been used to assess match 
quality. SEQUEST is based on one such model. 
 
4.2.2 Interpretative models  
 
Interpretative approaches are based on manual or automated interpretation of a partial sequence from a tandem 
mass spectrum and incorporation of that sequence into a database search. Matches between the sequence and 
the spectrum have been scored using probabilities or correlation methods. 
 
4.2.3 Stochastic models  
 



Stochastic models are based on probability models for the generation of tandem mass spectra and the 
fragmentation of peptides. Basic probabilities of fragment ion matches are obtained from training sets of spectra 
of known sequence identity. Stochastic models use statistical limits on the measurement and fragmentation 
process to create a likelihood that the match is correct. 
 
4.2.4 Statistical and probability models  
 
Statistical and probability models determine the relationship between the tandem mass spectrum and sequences. 
The probability of peptide identification and its significance are then derived from the model. MASCOT is based 
on one such model. 
 
4.3 Search Engine Algorithm comparison: MASCOT vs. SEQUEST 
 
The most commonly used algorithms for mass spectrometry based protein identification are MASCOT, MS-Fit, 
ProFound and SEQUEST. Due to space considerations, this paper will compare and contrast two of the four 
algorithms referring to a third algorithm ProFound as relevant. MASCOT and SEQUEST and chosen to allow 
broad sampling of models. 
 
4.3.1 MASCOT 
 
This group of methods uses models based on empirically generated fragment ion probabilities [45,48,51]. In these 
methods no a priori determined probabilities are used. They generate a model that relates the sequences to a 
spectrum and determine the peptide identification score from this model. Thus, in the simplest models the 
frequencies of matches of b- and y-ions are determined and used to calculate a probability of sequence 
identification determined by the product of probabilities of its fragment matches. Several variations of this 
approach have been implemented in database searching algorithms [43, 45, 48, 51]. Mascot [41] uses a model 
analogous to the one previously developed for identifying proteins from their peptide mass fingerprint. Mascot 
may also use some empirical observations about fragment intensities and ion series continuity. The actual 
description of the model is not available in peer-reviewed literature and therefore we are not able to describe this 
algorithm in detail, even though it is one of the most widely used database search programs. But MASCOT had its 
origins in the MOWSE algorithm which we will briefly detail. 
 
The first stage of a Mowse search is to compare the calculated peptide masses for each entry in the sequence 
database with the set of experimental data. Each calculated value which falls within a given mass tolerance of an 
experimental value counts as a match. A molecular weight range for the intact protein can be used as a pre-filter. 
Rather than just counting the number of matching peptides, Mowse uses empirically determined factors to assign 
a statistical weight to each individual peptide match. The matrix of weighting factors is calculated during the 
database build stage, as follows: 
 
A frequency factor matrix, F, is created, in which each row represents an interval of 100 Da in peptide mass, and 
each column an interval of 10 kDa in intact protein mass. As each sequence entry is processed, the appropriate 
matrix elements fi,j are incremented so as to accumulate statistics on the size distribution of peptide masses as a 
function of protein mass. The elements of F are then normalized by dividing the elements of each 10 kDa column 
by the largest value in that column to give the Mowse factor matrix M: 
 
  

 
After searching the experimental mass values against a calculated peptide mass database, the score for each 
entry is calculated according to: 
 

  
 
Where MProt is the molecular weight of the entry and the product term is calculated from the Mowse factor 
elements for each match between the experimental data and peptide masses calculated from the entry. 



 
Probability Based Mowse 
Mascot incorporates a probability based implementation of the Mowse algorithm. The Mowse algorithm is an 
excellent starting point because it accurately models the behavior of a proteolytic enzyme. By casting the Mowse 
score into a probabilistic framework, there are a number of additional benefits:  
 
• A simple rule can be used to judge whether a result is significant or not.  
• Different types of matching (peptide masses and fragment ions) can be combined in a single search.  
• Scores from different searches and on different databases can be compared.  
• Search parameters can be optimized more readily by iteration.  
• Matches using mass values (either peptide masses or MS/MS fragment ion masses) are always handled 

on a probabilistic basis. The total score is the absolute probability that the observed match is a random 
event. Reporting probabilities directly can be confusing. Partly because they encompass a very wide 
range of magnitudes, and also because a "high" score is a "low" probability, which can be ambiguous. For 
this reason, scores are reported as -10*LOG10(P), where P is the absolute probability. A probability of 
10-20 thus becomes a score of 200.  

 
Significance Level 
Given an absolute probability that a match is random, and knowing the size of the sequence database being 
searched, it becomes possible to provide an objective measure of the significance of a result. A commonly 
accepted threshold is that an event is significant if it would be expected to occur at random with a frequency of 
less than 5%. This is the value which is reported on the master results page.  
 
It is important to distinguish between a significant match and the best match. Ideally, the correct match is both the 
best match and a significant match. However, significance is a function of data quality. It may be that there are 
just not enough mass values or the mass measurement accuracy is not good enough to get a significant match. 
This doesn't mean that the best match isn't correct, it just means that you must study the result more critically.  
 
The best match is still correct, but it is barely significant. If we did 20 such searches, we could expect to get this 
score by chance alone because there is such a huge number of entries in the sequence database. If the search is 
repeated once more, but with a mass tolerance of ±2.0 Da, the match is lost. None of the scores are significant 
and the correct match drops to third place. Fortunately, it is clear from the significance level that this is not a 
reliable match, and there is no danger of this result becoming a false positive.  
 
Expectation Values 
Each protein score in a peptide mass fingerprint, and each ions score in an MS/MS search, is accompanied by an 
expectation value. This is the number of matches with equal or better scores that are expected to occur by 
chance alone. It is directly equivalent to the E-value in a Blast search result. For a score that is exactly on the 
default significance threshold, (p<0.05), the expectation value is also 0.05. Increase the score by 10 and the 
expectation value drops to 0.005. The lower the expectation value, the more significant the score.  
 
Mass Tolerances 
The score in a peptide mass fingerprint is usually inversely related to the mass tolerance, as shown in the 
example above. This is not always the case for an MS/MS ions search, where increasing the peptide mass 
tolerance may have little effect on the score. This is because most of the discrimination comes from the MS/MS 
fragment ion matches. Opening up the peptide mass tolerance means that Mascot has to test many more 
peptides, (and so the search takes longer!), but the major contributions to the final score, the MS/MS fragment ion 
matches, are unchanged.  
 
In fact, if the peptide mass tolerance is set too tightly, in an effort to improve discrimination, one or more of the 
peptide matches may be lost, which will dramatically reduce the overall score.  
 
Limitations 
Like any statistical approach, the Probability Based Mowse algorithm depends on assumptions and models.  
 
One of these assumptions is that the entries in the sequence databases are random sequences. This is not 



always a good assumption. Some of the most glaring examples involve extended repeats, such as AAC62527, 
porcine submaxillary apomucin. Although the molecular weight of this protein is 1.2 MDa, over 80% of the 
sequence is composed of an identical 7 kDa repeat. It is difficult to know how to treat such cases. If a single 
experimental peptide mass is allowed to match to multiple calculated masses, then a single experimental mass 
which matches within a repeat will give a huge and meaningless score. But, if duplicate matches are not 
permitted, it will be virtually impossible to get a match to such a protein because the number of measurable mass 
values is too small to give a statistically significant score.  
 
Another assumption is that the experimental measurements are independent determinations. This will not be true 
if the data include multiple mass values for the same peptide, even if these are from ions with different charge 
states in an electrospray LC-MS run. Good peak detection and thresholding (in both mass and time domains for 
LC-MS) are essential for any scoring algorithm to give meaningful results.  
 
Sequence Query Scoring 
Amino acid sequence or composition information, if present, is treated as a rigorous filter on the candidate 
sequences. Ambiguous sequence or composition data can be used (in a manner similar to a regular expression 
search in computing) but it still functions as a filter, not a probabilistic match of the type found in a BLAST or 
FASTA search.  
  
Recently, a group of database search algorithms have been implemented that use collective properties of 
database sequences to calculate the probability that a sequence match is a random event. Thus, we have 
proposed to divide all database fragment ions into two groups: matches and misses46. Then, we assume that a 
hypergeometric probability models the frequencies of database peptides based on the number of matches. 
According to this model a probability that a peptide match is a random event is predicted from the hypergeometric 
probability of choosing K1 matches (number of matches of a peptide) in N1 trials (the number of fragment ions of 
the peptide) from a pool of fragments consisting of N fragments (number of all database fragments) K of which 
are matches (number of matches of all fragment ions to a spectrum). The hypergeometric probability of this event 
is: 
 

 
The probability of a peptide being a random match to the tandem mass spectrum is defined in the space that 
comprises all peptides whose mass match the mass of the precursor peptide. The significance of a peptide match 
is determined as a type I error of the null hypothesis—all fragment matches are random. OMSSA, a recently 
developed database search algorithm, uses a similar approach, where the peptide matches are modeled after the 
Poisson distribution. Database search algorithms based on the number of matches trend to spectral quality owing 
to the fact that a match to a background peak and a match to a sequence ion are not distinguishable. Statistical 
models produce a statistical confidence for a match between the spectrum and database sequences. This 
confidence is based on the frequency of fragment ions in the database itself, and the probability a spectrum is a 
random match rather then the closeness of fit to a fragment model. 
 
4.3.2 SEQUEST 
 
SEQUEST [38] is an example of a program that uses a descriptive model for peptide fragmentation and 
correlative matching to a tandem mass spectrum. It uses a two-tiered scoring scheme to assess the quality of the 
match between the spectrum and amino acid sequence from a database. The first score calculated, the 
preliminary score (Sp), is an empirically derived score that restricts the number of sequences analyzed in the 
correlation analysis. Sp sums the peak intensity of fragment ions matching the predicted sequence ions and 
accounts for the continuity of an ion series and the length of a peptide. The original Sp score is: 
 

 



 
where the first term in the product is the sum of ion abundances of all matched peaks, m is the number of 
matches,  is a 'reward' for each consecutive match of an ion series (for example, 0.075),  is a 'reward' for the 
presence of an immonium ion (for example, 0.15) and L is the number of all theoretical ions of an amino acid 
sequence. 
 
The second score is a cross-correlation of the experimental and theoretical spectra. This score is referred to as 
XCorr. The theoretical spectrum is generated from the predicted fragment ions, the b- and y-ions for each of the 
sequences. In the theoretical spectrum the main ion series products are assigned an abundance of 50, a window 
of 1 atomic mass unit around the main fragment ions is assigned intensity 25, and water and ammonia losses are 
assigned intensity of 10. The theoretical and normalized experimental spectra are cross-correlated to obtain 
similarities between the spectra. First, a cross-correlation of the two discrete data sets, experimental data (E) and 
theoretical spectrum (T), is taken: 
 

 
 
The correlation is processed and averaged to remove the periodic noise in the interval of (-75 to 75). In addition to 
the preliminary and cross-correlations scores, SEQUEST produces another important quantity, normalized 
difference of Xcorr values between the best sequence and each of the other sequences. This value, Cn, is 
important in distinguishing the best match from other lower-scoring matches. That is, Cn is useful to determine the 
uniqueness of the match. If a match is reasonably unique to a sequence, the Cn value will be large (>0.1). XCorr 
is independent of database size and reflects the quality of the match between spectrum and sequence, whereas 
Cn is database dependent and reflects the quality of the match relative to near misses. 
 
The cross-correlation score is a sensitive measure. However, like other measures based on additive features, it is 
dependent on peptide mass, charge state and spectral quality. Thus it has been observed that larger peptides 
score higher than similar-quality smaller peptides. Very dense (potentially noisy) spectra can have high cross-
correlation scores. To address these issues, a few modifications have been made to the cross-correlation score. 
To normalize XCorr for spectral noise and peptide size, the XCorr value is divided by auto-correlation of the 
experimental spectrum or by the square root of the products of auto-correlations of experimental and theoretical 
spectra. A statistical confidence can then be readily derived from the normalized cross-correlation scores. 
SEQUEST has been shown to have good sensitivity and flexibility and is applicable to data generated by different 
types of mass spectrometers. 
 
4.4 Comparison: MASCOT vs. SEQUEST 
 
In prior sections, we have looked in detail at the qualitative comparison between MASCOT and SEQUEST. We 
will now focus on objective and experimental results obtained in a study that help to evaluate MASCOT and 
SEQUEST head-to-head. 
 
4.4.1 Evaluation Methodology and Criteria 
 
The software tools for protein identification using mass spectrometric information will give a top-ranking candidate 
even if all the matching peptides are random matches. It is important to determine the quality of the identification, 
that is, what the probability is that the identified protein is a false positive. 
 
 
 



 
 

Figure 7. Simulations provide a method for determining the quality of the search results [41]. 
 
One method for assessing this is by using simulations [36]. In the simulations, protein sequences were randomly 
selected from a protein sequence database, digested according to the specificity of an enzyme, a single peptide 
was randomly chosen, and its mass calculated and stored. This procedure was repeated and a theoretical mass 
spectrum was constructed. This theoretical mass spectrum was then used in a database search and the top score 
was saved. The protein sequence with the highest score was in nearly all cases a false positive, that is, the 
peptide matches were random. These searches were repeated with different theoretical mass spectra and a 
distribution of scores for random identification was obtained. Subsequently, the distribution of scores for random 
identification can be used to assess the quality of the results when experimental data is used in a database 
search, that is, each protein candidate in the list can be associated with a probability for it being a false positive. 
Other methods are attempts at directly calculating the probability that the masses observed in a mass spectrum 
would correspond to proteolytic peptides from a protein sequence. The direct calculations are, however, less 
reliable than the simulation because it is necessary to make approximations because of the complexity of the 
process. Objective methods for assessing the quality of search results have become more important as high-
throughput proteome analysis is becoming more widespread [36, 42, 43 and 44]. 
 
The software tools for protein identification have matured and the algorithms have been refined to give higher 
selectivity and sensitivity. High-throughput analysis has become increasingly common in proteome projects and 
requires automatic analysis of the mass spectrometric data. An important part of automation is quality control and 
therefore development of methods to determine the quality of the search results has become a focus. 
 
In [39] commonly used algorithms for mass spectrometry based protein identification, Mascot, MS-Fit, ProFound 
and SEQUEST, were studied in respect to the selectivity and sensitivity of their searches. The influence of various 
search parameters were also investigated. Approximately 6600 searches were performed using different search 
engines with several search parameters to establish a statistical basis. The applied mass spectrometric data set 
was chosen from a current proteome study. As a side effect, they present a software solution for fully automated 
triggering of several peptide mass fingerprinting (PMF) and peptide fragmentation fingerprinting (PFF) algorithms. 
The development of this high-throughput method made an intensive evaluation based on data acquired in a 
typical proteome project possible. Previous evaluations of PMF and PFF algorithms were mainly based on 
simulations. The system setup was a classic 3 tier - Web Server, Middle-Tier Application Server and a Back-End 
SQL Server.  
 



                                                                                 
Figure 8. Multi-tier Evaluation setup. 
 
 
Mouse brain samples were obtained from a European study for mapping genes on chromosomes. MALDI-TOF 
MS analyses were used. The data set consisted of 89 different PSD spectra. In all searches, the nondedundant 
NCBI database consisting about 600,000 entries were used. Most parameters were constant between PMF and 
PFF search engines. 
 
 
4.4.2 Experimental Results 
The results were assessed automatically and evaluation was based on all matches that were reported on rank 
one by the PMF and PFF search programs. All other ranks were ignored. PMF search results were considered 
correct of the sequences of the matched peptides corresponded to the previously identified reference protein 
sequence. PFF search results were considered correct of the sequence of the found peptide or one of its isobaric 
derivations was contained in the reference protein. 
 
Generally, an important criteria for judging performance of PMF programs is their ability to report true positives. 
Plots of scoring distributions are shown below. MASCOT (53.0 % or 89 proteins identified correctly) and 
ProFound (53.6 % or 90 proteins identified correctly)clearly separated true positives by their search scores and 
besides a few exceptions, MASCOT and ProFound identified the same set of proteins. Both provide score values 
that correspond to a significance level of 5%. Dotted lines show correct identification and solid lines show 
incorrect identification. 
 

                                                                                           
 
Figure 9. Comparison of PMF algorithm performance. 
 
 



 
 
 
 
 
 
 

                                                                          
Figure 10. Comparison of PFF algorithm performance. 
 
In the PFF category, 89 different MALDI-PSD data sets were used. Identical search parameters were used for 
both programs. MASCOT identified 16 proteins (17.9%). The above plots show the comparison of true positives 
and false positives. MASCOT reported a significance level of 5%. Only 3 true positives had a score above the 5% 
significance level. SEQUEST search results are ranked by cross-correlation of virtually reconstructed mass 
spectra of protein database entries and the acquired mass spectral data. The differences between the normalized 
cross-correlation parameter of the first and second ranked amino acid sequences (delta Cn) are said to be a trend 
to cutoff true positives from false positives. SEQUEST identified 33 proteins (37%) and showed a more obvious 
separation of true and false positives as compared to MASCOT. Of note is the fact that MASCOT identified one 
protein that SEQUEST did not. However, with SEQUEST there is no significance level or probability reported to 
attach value to a particular identification. 
 
4.4.3 Effect of Search Parameters  
 
Preselection of proteins/Species Filtering 
Both algorithms allow preselection of proteins from the sequence database either by choice of taxonomy ('all', 
'animals', 'mammals', 'mouse') or by restrictions to the protein's pl and Mr range. MASCOT is sensitive to the 
number of preselected sequences. Though phylogenetic trees are used to divide the FASTA sequence 
databases, poorly standardized conventional names and locations of species information causes MASCOT and 
ProFound to have different effective databases for the algorithms to work on. Restriction of the number of 
database entries input to the algorithms is key to speed up and find true matches for both algorithms. SEQUEST's 
correlation values delta Cn change significantly with restrictions but the normalized correlation values remain 
relatively the same. 
 
Mass accuracy parameter 
Both algorithms allow for tolerances in mass accuracy 0.7 - 1.6 Da. MASCOT is sensitive to mass accuracies 
worse than 50 ppm i.e. there is a spike in false positives reported with this level of mass accuracy. Changing the 
mass tolerance parameter for fragment ions in SEQUEST had little effect on the search result because this 
parameter only influences the preliminary scoring function which selected peptides for the cross-correlation. 
 
Parent ion mass tolerance 
Peptide mass tolerance has a contained effect on scoring in an MS/MS ion search because most of the 
discrimination is due to fragment ion matches. Increasing peptide mass tolerance simply increases the number of 
peptides that have to be tested. However, search speed and the risk of obtaining high scoring false positives 



decreases. Both algorithms performed best at 0.3 Da. And in the case of good quality spectra, small changes to 
parent ion mass tolerance are usually not crucial. On the other hand, if the peptide can be modified, searching 
with no restriction on the parent ion tolerance is the only chance to jump out of a local optimum. 
 
Variable modifications 
Both algorithms allow for variable amino acid modifications. Both algorithms reported more false positives when 
variable modifications were allowed (MASCOT to a greater extent) and this is attributable to the geometric 
increase in the number of virtually digested peptides. SEQUEST is more robust to variable modifications. 
However, this strategy allows for getting out of local optimums and reporting edge true positive cases. 
 
Allowed missed cleavage sites 
MASCOT performed better when one missed cleavage site was allowed. The noise generated when two missed 
cleavage sites was allowed reported too many false positives. Although, this strategy allows for greater sequence 
coverage. If search speed is not crucial, allowing two missed cleavage sites is a good starting point. 
 
4.4.4 Conclusion and Algorithmic Research Challenges 
 
SEQUEST performed better overall although a combination of various search algorithms via voting might be a 
sophisticated approach towards higher confidence in a database search result. 

 
Automated analysis of tandem mass spectra is a critical process for new analytical strategies such as 'shotgun 
proteomics'. As tandem mass spectrometers have improved, the acquisition of hundreds of thousands of spectra 
has become not uncommon, and thus, accurate approaches to identify and validate sequence matches will make 
this method all the more powerful. Although a variety of algorithms have been demonstrated to provide accurate 
matches between tandem mass spectra and sequences, all suffer from an inability to provide verifiable matches 
to poor-quality spectra. Reliable and sensitive methods to assess spectral quality and assign quality indices to 
spectra will be critical for decreasing computational load and lowering false-positive rates. Most algorithms are 
very accurate for peptides that follow general rules of fragmentation, but a subset of amino acid sequences and 
more highly charged peptide ions deviate from these rules; thus, a better understanding of relationships between 
peptide sequences and fragment ion intensity will assist in designing better models for matching spectra to 
sequences. Additional studies to better understand the strengths and weaknesses of the various algorithms will 
help to design algorithms with better sensitivity and selectivity. 
 
• False positives are a perpetual concern in database searching. They can arise for several reasons. Data-

dependent algorithms for large-scale acquisition of tandem mass spectra do not discriminate between 
peptide ions and other types of ions that may be present. Thus, search algorithms are often confronted 
with a collection of spectra that could be single peptide ions, chemical noise, nonpeptide molecules or 
mixtures of correlating isobaric peptides, which are then matched to amino acid sequences. Good data 
preprocessing or a search of a library of contaminants can help remove nonpeptide spectra prior to a 
search. 

 
• Peptides are often present at a wide range of concentrations in a sample, and peptides present at the 

limit of detection can produce poor quality fragmentation. The issue of sensitivity is more difficult to 
correct as it is heavily dependent on the limit of detection of a mass spectrometer. The effects can range 
from incomplete dissociation to poor ion statistics for fragment ions, making them indistinguishable from 
noise. In these cases incomplete fragmentation patterns or poor signal-to-noise ratios may lead to a 
solution that is not unique or correct. 

 
• The chemistry of peptide fragmentation is also not completely understood, and thus, fragmentation 

models used in database searching may not accommodate aberrant fragmentation processes and result 
in false positives. Several statistical studies of peptide fragmentation have been performed to better 
understand the contributions of specific amino acids to fragmentation processes. In time, improved 
models will account for more of the aberrant fragmentation processes. 

 
• Sequence conservation can lead to confusing results. If the same peptide sequence exists in multiple 



proteins, all of the proteins will be identified. Without additional peptide data it would be impossible to 
determine which protein produced the peptide that generated the tandem mass spectrum. Identifying this 
situation is straightforward, as most algorithms track all proteins that a spectrum matches. 

 
• A final possibility, and perhaps of more concern, are amino acid sequences that do not produce a unique 

fragmentation pattern but share enough of the same fragment ions to be indistinguishable from one 
another. In these cases a unique amino acid sequence can not be determined directly from the 
fragmentation pattern and other means are required to determine the absolute identity of the peptide. In 
particular, small peptides, less than eight amino acids in length, may not produce a fragmentation pattern 
that achieves a unique result. 

 
 

6. Future Trends 
 
Four main challenges to be addressed in order for proteomics to have a substantial impact on eukaryotic biology 
within the systems biology model.  
 
• The first challenge is the enormous complexity of the proteome. For some proteins, in excess of 1,000 

variants (splice and translation isoforms, differentially modified and processed species) have been 
described. The detection, and particularly the molecular analysis of this complexity, remains an 
unmatched task.  

 
• The second challenge is the need for a general technology for the targeted manipulation of gene 

expression in eukaryotic cells. An approach that has proved successful for the systematic analysis of 
biological systems relies on iterative cycles of targeted perturbations of the system under study and the 
systematic analysis of the consequences of each perturbation. Although recent advances in using RNA 
interference in higher eukaryotic cells open up exciting possibilities, the general targeted manipulation of 
biological systems in these species remains unsolved.  

 
• The third challenge is the limited throughput of today's proteomic platforms: iterative, systematic 

measurements on differentially perturbed systems demand a sample throughput that is not matched by 
current proteomic platforms.  

 
• The fourth challenge is the lack of a general technique for the absolute quantification of proteins. The 

ability to quantify proteins absolutely, thereby eliminating the need for a reference sample, would have 
far-reaching implications for proteomics—from the determination of the stoichiometry of protein 
complexes to the design of clinical studies aimed at discovering diagnostic markers. 

 
Fortunately, proteomics will have an impact on clinical and biological research well before these challenges are 
met. It is expected that precise clinical diagnosis based on highly discriminating patterns of proteins in easily 
accessible samples, particularly body fluids, may be the area in which proteomics will make its first significant 
contribution [41, 42]. 
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