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Introduction 
The invention of DNA microarrays has triggered numerous efforts to analyze relative mRNA expression 
information from different cellular subsystems across a variety of experimental conditions. These 
conditions include internal cellular physiology from different cell lines, diverse physiological conditions 
in an intact organism, pathological tissue specimens from patients and serial time points following a 
stimulus to the cell or organism (1). A typical microarray experiment contains expression levels of 
thousands of genes across hundreds of different conditions. This results in the creation of enormous 
amounts of information which while being potentially useful in a variety of ways (discussed below) 
generates a need for high quality methods for determining statistical and biological significance. For 
instance, in Stanford and Rosetta alone, more than 30 million independent gene expression measurements 
were made over a span of two years (2). Potential uses for data generated from microarray experiments 
include (i) analysis of gene expression patterns in normal cells and tissues (ii) differential gene expression 
patterns (biomarker determination) in disease (iii) gene expression in model systems (iv) gene expression 
patterns in pathogens (v) gene expression in response to drug treatment i.e. dose response studies, 
mechanism of drug action studies etc (3) (vi) study of toxicogenomics or finding gene expression patterns 
in a model organism or tissue exposed to a compound and their use as early predictors of adverse events 
in humans (vii) evaluation of target selectivity by comparing the gene expression patterns in the target 
tissue with other compounds (viii) design of prognostic tests by finding a set of genes that accurately and 
adequately distinguishes one disease from another and determines sub classes. (4)  
 
The analysis of microarray data can be performed at different levels of complexity: (i) at the level of 
single genes (probe level), where one seeks to determine whether a particular gene is differentially 
expressed under control and experimental conditions (ii) at the level of multiple genes, where one seeks to 
classify genes into known classes or to identify new and unknown classes (iii) at the systemic or genomic 
level, where one seeks to identify the underlying gene and protein networks responsible for the gene 
expression patterns observed (5). In this review, I will briefly discuss some of the aspects of the first and 
third kind of analysis and will focus more on the analysis at the multivariate gene level. I will review the 
issues that arise when evaluating algorithms that group together elements of these large data sets and for 
removing features that are redundant and provide little additional information.  
 
Experimental protocols 
The two most commonly used microarray techniques include the use of the high density oligonucleotide 
microarray technology as provided by the Affymetrix GeneChip technology and spotted cDNA arrays. 
The GeneChip contains oligonucleotides of 25 base pairs in length (or lesser) to probe for genes. The chip 
contains two kinds of probes – reference probes that match the target sequence exactly (perfect match) 
and partner probes that differ from the reference probes by only one base pair at the center (Mismatch 
probe). Typically 16-20 of these probe pairs, each hybridizing with a different sequence on the gene make 
up the complete probe set and are located at different pre-determined locations on the chip. In the spotted 
cDNA arrays, the DNA sequences are attached to a glass slide or other surface at multiple locations using 
a robotic arm (6). These sequences are laid out as spots with one DNA sequence per spot. Both 
technologies use similar experimental protocols. mRNA is isolated from experimental and control 
conditions and reverse transcribed in presence of a flurophore to generate differentially labeled cDNA 
samples. Traditionally experimental cDNAs are labeled with Cy5 while the control cDNAs are labeled 
with Cy3. Purified cDNAs are mixed in a 1:1 ratio and competitively hybridized to the microarray. Slides 
are washed to remove excess sample and read using a flourimeter. The fluorescent intensity of each spot 
is read separately for the control (green) and experimental (red) samples. Spots that appear yellow have 
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approximately equal amounts of control and experimental samples bound, while the red or green spots 
have increased levels of the experimental and control sample respectively. Black spots correspond to 
genes that are not differentially expressed, while red spots indicate upregulation of the gene (increase in 
expression levels) and green spots indicate downregulation (7). Software is available to for the image 
analysis and data normalization and these methods will not be discussed in this review. After 
normalization, the expression ratio of the experimental to control value is calculated for each spot and is 
typically recorded as a log2 [Cy5/Cy3] ratio in an n-dimensional expression matrix, where n is the total 
number of genes in the experiment. In this matrix, every row represents a different gene, every column 
represents a different condition, all the elements of a row or column represent a profile of the experiment 
that we try to analyze and the individual expression measurements within the profile represent the 
features (1). Logarithms are used rather than the ratios themselves because they are easier to model and 
interpret. A gene that is upregulated by a factor of 2 has a log ratio of 1, a gene that is downregulated by 2 
has a log ratio of -1, and a gene expressed at a constant level has a log ratio of 0. One can use log ratios of 
other bases as well as long as one is consistent (5).  
 
Normalization and noise 
Before data from multiple microarray experiments can be pooled into a single analysis, the data must first 
be normalized and corrected for possible sources of noise. The difficulties arise from numerous potential 
sources of random and systematic measurement error and from the small number of samples or replicates 
relative to the large number of genes or probes and conditions tested for (8). Normalization methods 
might include simple methods such as adjusting the overall brightness of each scanned microarray image 
(assuming that the quantity of RNA is equal), using expression levels of housekeeping genes whose 
expression levels are assumed to be constant across the experimental conditions considered (not always 
valid) and the use of other more sophisticated nonlinear techniques that are reviewed elsewhere (9). There 
are several sources of noise in microarray data. Inter and intra microarray variations can markedly skew 
the interpretation of the expression data. Improving the reliability of the expression measurements starts 
with proper experimental design such as pooling biological samples before hybridization to ensure true 
replicates. Scanned hybridization images need to be inspected for artifacts such as scratches and bubbles. 
There is substantial heterogeneity of gene expression in cell subpopulations of most organs and disease 
states. Failure to account for such variation could lead to over-interpretation or spurious functional gene 
associations (4). All the abovementioned sources of noise need to be incorporated directly into the 
analytical tools that interpret the data in order to get more reliable estimates of clinical and biological 
data. Also, differences between the two microarray technologies need to be taken into account. 
Specifically, oligonucleotide microarrays report absolute expression levels while spotted cDNA 
microarrays report relative differences in gene expression between samples. Different normalization 
techniques need to be used in both cases as the assumptions made about the data are different and data 
from the two different assays cannot be directly combined. For instance, if we assume that in any given 
experiment, most genes do not change in expression levels and that equal numbers of genes are 
upregulated and downregulated (not always a valid assumption), then differential expression 
measurements from spotted arrays might be found to be normally distributed while measurements from 
oligonucleotide microarrays will not have the same distribution. Furthermore there has been found to be 
striking non-correlation between quantitative measurements in Affymetrix arrays and ratios of intensities 
from spotted arrays because the two technologies measure gene expression differently (4). In addition to 
random and systematic errors (that include biases), outliers in the data reduce both specificity (measure of 
false positives) and sensitivity (measure of false negatives). Outliers can be caused by factors such as 
uncorrected image artifacts, improper or failed hybridizations etc (8). 
 
Initially measurements of differential expressions were assessed by comparing the ratio of expression 
levels between two conditions, a method known as fold change approach. Genes with ratios above a fixed 
cutoff k were said to be differentially expressed. However, this method has been proved to be unreliable 
because it fails to take into account measurement errors. For example, an excess of low intensity genes 
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might be mistakenly identified as differentially expressed because their fold change values have a larger 
variance than the fold change values of high intensity genes. A more sophisticated method proposed by Li 
and Wong, fits the data to a model that accounts for random, array and probe specific noise and then 
evaluates whether the 90% confidence interval for each gene’s fold change excludes 1.0. This model 
incorporates measurement variability but does not perform well when the data set is too small or 
heterogeneous (5). 
 
Significance and errors of inference 
 All statistical inferences are associated with a probability of being incorrect. False positives are incorrect 
expressions of differential expression. False negatives are failures to detect true differential expression. 
Regardless of the test statistic used (false negative rate or false positive rate), one needs to convert it to a 
p value to determine its significance. Standard methods for estimating p values use statistical distribution 
tables. However, these tables rely on the assumption that the data is sampled from normal populations 
with equal variances. This is not true when considering gene expression data from different conditions 
such as tumor and normal cells. Permutation tests, which are carried out by repeatedly shuffling the 
sample’s class labels and computing t statistics for the genes in the shuffled data enable one to assess 
significance without assuming normality. However, these permutation tests are time consuming, 
complicated and require that the data set be large enough so that different permutations are possible.  
 
The issue of multiple testing is crucial in microarray analyses because most microarray experiments 
require that the expression levels of thousands of genes be monitored across numerous conditions 
requiring that thousands of statistical tests be computed. If we assume a standard p value for each 
experiment, we run the risk of accumulating a large number of false positives. For instance, if the p value 
used is 0.01, which means that 1% of all results are false positives, while this might be an acceptable 
statistic in most biological studies, a microarray experiment that studies 10000 genes will have a false 
positive level of 100 genes which is clearly unacceptable. Two methods that have been proposed to 
address the problem of multiple testing include Family-wise error-rate control (FWER) and False-
discovery rate control (FDR). FWER is the overall probability that at least one gene is incorrectly 
identified as over expressed over a number of statistical tests. One way to control the FWER is to increase 
the stringency of each individual test. The single step Bonferroni correction is the best known procedure 
to control the FWER (and FDR) and defines an effective rate as the standard false positive rate divided by 
the number of tests conducted (e.g. 0.01/10000). This procedure ensures that the probability of making at 
least one false positive error among an entire set of statistical tests is no more than 0.01. This is an 
extremely stringent control that drastically increases the false negative rate (8). Other methods have been 
proposed such as the step down correction method, permutation based one step correction method etc. 
These latter tests perform better compared to the standard Bonferroni but are more computationally 
complex.  
 
The FDR is the probability that a given gene identified as differentially expressed is a false positive. The 
FDR is a post measure of confidence and uses information available in the data to estimate the proportion 
of false positives that have occurred. A simple method for bounding the FDR proposed by Benjamini and 
Hochberg assumes independent tests and sets an upper bound for the FDR by a step up or step down 
procedure applied to individual p values. In this method, the calculated p values of each individual test are 
ordered from the most significant p (1), to the least significant p (n). A rule R is then formulated that will 
specify when the null hypothesis (a gene is not differentially expressed) is rejected. The FDR of R is the 
expected proportion of hypotheses, h (i) that is actually true. Benjamini and Hochberg identified an 
algorithm that allows the specification of a preset value of α which serves as the upper bound of FDR or 
R, where FDR (R α)  ≤ α. The analyst can then use R as a measure of significance and be assured that the 
FDR using R will be less than or equal to the preset value α derived from Benjamini and Hochberg’s 
algorithm (5).  
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Several parametric and non parametric methods are available for analysis gene expression data at the 
level of a single gene. The parametric methods include the standard t test, variations of the t test and 
regression modeling. Nonparametric tests include Bayesian frameworks, mixed modeling approaches and 
simpler tests such as the Wilcoxon’s test, Mann-Whitney U test etc. These methods will not be reviewed 
in detailed here and are available elsewhere (5, 9-11).  
 
Supervised and unsupervised methods 
Supervised methods require that the genes or conditions are associated with some external sources of 
information that provide pre-existing classifications. This information includes knowledge about gene 
function or regulation, disease subtype or tissue origin of a cell type. This classification information is 
used to drive the analysis of gene expression and hence the term supervised learning method. For 
example, consider the problem of classifying unknown genes as ribosomal or non-ribosomal. Because 
some genes are already known to be ribosomal, we can use these genes to build a model of ribosomal 
genes and to determine features that identify this set.  If expression measurements are available over a 
variety of experimental conditions, we can assess whether these genes are ribosomal or not by comparing 
them with the expression profiles of the training set (1).  
 
These methods are used primarily for two purposes: finding genes with expression levels that are 
significantly different between groups of samples and predicting characteristic(s) that completely define a 
sample or group. Significance can be evaluated in several ways as discussed above. When determining 
whether a particular gene is differentially expressed between two samples, there are four characteristics 
that need to be considered: absolute expression level (whether the gene is expressed at high or low 
intensity levels), degree of change between groups, fold change between groups or the ratio of expression 
levels across samples and finally the reproducibility of the measurement. All four characteristics are 
related. For example, genes measure at low expression intensities have poorer reproducibility across 
samples and have high fold changes that may not be biologically significant (4).  
 
Like HMM based motif finding algorithms, supervised method suffer from over-fitting the training set. If 
true, the positive predictive value of the algorithms would be high for previously classified genes but 
potentially important genes would be misclassified. Another implicit assumption is that subtle differences 
in gene expression must be discerned which is not always true. The success of these algorithms depends 
heavily on the quality of the initial training set. Methods that fall in this category include nearest neighbor 
approach decision trees, neural networks and support vector machines. In this review, I will focus on two 
of the more popular supervised methods namely nearest neighbor technique and support vector machine.  
 
Unsupervised methods require no additional information besides the gene expression data itself. These 
methods are driven towards discovering patterns or relationships in a data set. They are best used for 
exploratory tasks. With unsupervised techniques, there are three classes of techniques: feature 
determination or determining genes with interesting properties without looking for a particular pattern 
such as principal component analysis, cluster determination or looking for similar gene expression 
patterns such as nearest neighbor clustering, self organizing maps, k means clustering and finally network 
determination or determining graphs representing gene-gene or gene-phenotype interactions using 
Boolean networks, Bayesian networks and relevance networks. The final technique is used for genomic 
scale analyses. In this review, I will discuss the three most common unsupervised techniques namely 
hierarchical clustering, self organizing maps (analysis at the level of multiple genes) and relevance 
networks (analysis at the network level).  
 
Dissimilarity measures 
Dissimilarity measures indicate the extent of similarity between two genes. These measures are different 
from clustering methods which build on these dissimilarity measures to create groups with similar patters. 
The most commonly used dissimilarity measure is Euclidean distance (square root of the sum of the 



 5 

squared differences between the corresponding features), for which each gene is considered a point in 
multidimensional space, each axis is a separate sample, and the coordinate on each axis is the amount of 
gene expression in that sample. There are several disadvantages to using this measure. One is that if the 
measurements are not normalized, correlation of measurements can be missed because the focus is on the 
overall extent of expression. The second disadvantage is that this measure does not identify negative 
associations such as gene interactions between tumor-suppressor genes. For example, the tumor repressor 
protein p53 acts as a transrepressor of several genes. This means that with high levels of p53, the 
expression of the other genes will be low. Negative interactions similar to this one are clearly different 
from no interactions. 
 
A second dissimilarity method is the Pearson Correlation Coefficient (ranging from -1 to +1) which is 
measured between two genes that are treated as vectors of measurement. The disadvantages of using this 
method are that it assumes normal distribution of measurements which is not the case for most 
oligonucleotide microarray measurements; it assumes linear interaction between genes which is again not 
always the case in biology where a particular gene might best regulate other genes when it is in the 
middle of its expression. This method is also sensitive to outliers. A third dissimilarity method is mutual 
information which allow for any possible model of interaction between the genes and uses each measure 
equally regardless of the actual value. This method is not affected by outliers and allows for negative 
associations. However calculating mutual information requires using discrete measurements such as 
representing gene expressions as being high or low, and the measure depends on the exact number of bins 
used. It is also possible for gene-gene interactions having high mutual information to have complicated 
mathematical functions and biological interpretation is difficult. 
 
Hierarchical Clustering 
Hierarchical Clustering is the most frequently used method for analyzing microarray data analysis. This 
method compares similarity between gene expression vectors that are similar to those used for 
phylogenetic analysis. This technique builds clusters of genes with similar patterns of expression. An n 
dimensional matrix is obtained that represents the extent of mathematical similarity (pair-wise similarity 
scores) seen in the genes. Then the method builds a dendogram that assembles all the elements of the 
matrix into a single tree. This is done by iteratively grouping together genes which have a high correlation 
in terms of expression measures, then grouping the different groups themselves to form a tree. A node is 
generated for the highest scoring pair, its average gene expression vector is computed and the distance 
between the node and the remainder of the matrix is recalculated. This process is iterated n-1 times till all 
the gene expression profiles are incorporated into one single tree. Each leaf of the tree represents an 
expression profile for a single gene. Co-expressed genes branch off common nodes. Similarity scores are 
reflected by the branch lengths of any pair of genes in the tree – the length of a branch is inversely 
proportional to the extent of similarity. Although construction of the tree is initiated by connecting genes 
that are most similar to each other, genes added later are connected to the branches that they are most 
closely associated with. Although each branch links two elements, the overall shape of the tree can be 
asymmetric. This method was pioneered in the Brown and Botstein labs at Stanford (12).  
 
Several methods can be employed to build the tree. One method is Single–linkage clustering in which the 
program calculates the distance between two clusters by determining the minimum distance between two 
members of the cluster (nearest neighbor method). In the Complete-linkage clustering method, the 
farthest distance between two members of the cluster is used. This method tends to produce compact 
clusters of similar size. A third method is the Average-Linkage clustering method in which distances are 
calculated by averaging distances between members of the cluster. This method is similar to the UPGMA 
tree building method which calculates distances based on average expression profile for each cluster and 
joins the clusters separated by the smallest average distance (13). An alternate method is the Weighted-
Pair group average method in which the size of the clusters is used to weight the clusters and is best used 
when it is expected that the cluster sizes will be uneven. The last method was used by the Botstein labs in 
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their pioneering study on hierarchical clustering of microarray data (12). The Pearson coefficient was 
used as an estimate of similarity. The dot product is calculated for each pair of correlation coefficients and 
used to generate the matrix. This method is advantageous because similarity scores are a reflection of the 
shape of the expression profiles rather than the magnitudes of the signals.  
 
The hierarchical clustering software package introduced by the Brown and Botstein labs (TREEVIEW) 
(12) is one of the most widely used tools in functional genomics. From such clustering studies, 
fundamental relationships that exist in the cell can be discovered. For example, genes that encode 
functionally related proteins are often co-regulated. Potential functions for novel or uncharacterized genes 
can be guesstimated based on co-regulation with genes of known function. Coincident expression patterns 
over a range of experimental conditions increase the probability of discovering a common transcriptional 
regulatory program for a set of genes and computational methods that assay non-coding regulatory 
regions for conserved transcription factor binding sites may be informative in such cases. Crosstalk 
between signaling pathways may also be reflected in similar expression of genes under different 
conditions (7).  This method is particularly advantageous in visualizing overall similarities in expression 
patterns observed in an experiment. The number and size of expression patterns within a dataset can be 
estimated quickly.  
 
There are significant disadvantages to using this method. Hierarchical clustering ignores negative 
associations even when the underlying dissimilarity measure used supports them. As discussed above 
negative associations can be crucial to the biological process under study and may be missed completely. 
This method does not result in clusters that are globally optimal in that early incorrect choices in linking 
genes to a branch are not reversible after other branches have been added to the tree. So, this method falls 
under the category of greedy algorithms which provide good answers but are computationally intractable 
for finding the most globally optimal set of clusters (4). Such a scenario might result in poorly delimited, 
noisy clusters that may obscure relevant relationships in a dataset. Like all clustering methods, the 
number and composition of the clusters produced vary with the choice of distance metric and analysis is 
highly subjective. The use of a weighted average method becomes increasingly problematic as the 
weighted average may not accurately reflect the expression profiles of genes within the cluster. The 
distance metrics also assume linear relationships between the objects which is not necessarily true in 
biology. Methods that assume nonlinear correlations between the genes analyzed such as the use of the 
Spearman coefficient allow many-at-once comparisons and may be more relevant to the needs of system 
biologists who wish to construct a comprehensive network of specific transciptosomes. The results of 
clustering are very sensitive to the features used to compute the dissimilarity metric. Features are usually 
weighed equally and the effects of relevant features can be masked by irrelevant ones. For example, in a 
study of response of cancer profiles to a drug, a feature set including the entire genomic profile may not 
be appropriate because the response depends on a handful of target genes and inclusion of thousands of 
other genes might introduce a lot of noise into the analysis and make extraction of similarities of genes 
difficult (1). 
 
An improvement to hierarchical clustering is k-means clustering when the exact number of clusters to be 
created is known. Initially cluster centers are selected randomly. Since k is specified randomly, primary 
component analysis is first performed to estimate the number of regulations on the data set. This 
technique reduces the dimensionality of the dataset by projecting the data in n-dimensional space onto a 
Cartesian coordinate system. This provides a visually intuitive interface for making general assumptions 
about the diversity and content of the dataset. Different k values can also be tested initially. Often times, k 
values are over estimated since the success of the analysis rests on the quality of the clusters produced (7).  
For every iteration, all the profiles are assigned to a cluster that they are nearest to and then the cluster 
center is recalculated based on the profiles within the cluster. A recursive algorithm is used to choose 
expression vectors, calculate the inter and intra distances and move the vector only if the selected cluster 
is more similar to the point than the original one. K-means clustering allow biological knowledge to be 
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integrated into the clustering method but biological significance needs to be judged manually. This 
method has been successfully used the Altman lab to distinguish between two types of lymphomas (1). 
This approach may produce clusters that are more stable than those produced by solely binary 
comparisons. It is possible to address hypothesis driven questions by seeding clusters with expression 
profiles of interest such as a molecular signature that is characteristic of a particular cancer type prior to 
running the k-means clustering method. However this process is still a subjective process that is sensitive 
to the initial assumptions about the expression profile diversity in the matrix.  
 
Self Organizing Maps 
Self Organizing Maps (SOM) is a neural network based clustering system that is better designed for 
exploratory analysis. Similar to the k-means clustering, the total number of clusters needs to be estimated 
initially. The genes are first represented as points in multidimensional space. Each biological sample is 
considered a separate axis of this space and the expression levels are coordinates. This is easily visualized 
using 3 or fewer microarrays but can be extended to n dimensions. Euclidean distance is the most 
common measure of similarity used but the other metrics are also applicable. A map is set with the 
centers of each cluster to be arranged in an initial arbitrary configuration. As the method iterates, the 
centroids move towards randomly chosen genes at a decreasing rate. This is continued until there is no 
further movement of the centroids. At each iteration, a data point P is randomly selected and the node 
closest to the data point Np is moved most while the other nodes are adjusted proportionately depending 
upon their distance to Np in the initial configuration. This algorithm has been implemented in the 
software GENECLUSTER (13). A weighing factor learned from the test set ensures that the closest nodes 
are moved more than the distant nodes. Thus, each node comes to define a cluster of similar gene 
expression profiles and adjacent clusters are likely to contain genes that have related expression patterns 
or kinetics.  
 
The primary advantages of the SOMs include easy visualization of expression patterns and reduced 
computational requirements compared with methods that require comprehensive pair wise comparisons 
such as Hierarchical clustering (4). The nodes are fit according to a learned weight function and the 
positions of the nodes reflect the distribution of objects in the expression space and thus nodal 
organization in the SOMs is less arbitrary than those derived from pair-wise comparisons of similarity 
scores. Adjacent nodes in a SOM are more closely related than distantly located nodes. Although, use of 
this method does not guarantee discrete clusters, changing the starting configuration provides a starting 
point for addressing these issues. The use of SOMs in conjunction with Hierarchical clustering or 
Principal Component analysis gives a reasonable estimate of the number of nodes required to efficiently 
describe the dataset (7).  
 
The disadvantages of this method include an arbitrary initial configuration of the SOM and hence random 
movement of the centroids which makes the final configuration not always reproducible. Similar to 
Hierarchical clustering method, crucial negative associations are missed. Even after the centroids have 
stopped moving, further techniques are required to separate the boundaries of each cluster. Finally, genes 
can belong to only one cluster at a time (4). 
 
Relevance Networks 
Relevance networks perform expression analysis at the genome or network level. They allow networks of 
features to be built, whether it is of genes or phenotypes or clinical measurements. This method first 
compares all features of the genes in a pair-wise manner similar to the clustering methods. Two genes are 
typically compared with each other by plotting all samples on a scatter plot using expression levels as 
coordinates. A correlation coefficient (or any other dissimilarity metric) is calculated. A threshold is 
chosen and only those features above those are kept, while the others are discarded. These are displayed 
in a graph with genes as nodes and relationships as edges. The closer the association, the thicker is the 
edge. This method involves permuting the entire original dataset to preserve the distribution of gene 
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expression values but breaking the link between expression value and a particular condition or tissue. The 
pair-wise association strengths are recalculated for each permutation and the largest value of association 
obtained is recorded. After a large number of permutations, this maximum number becomes the minimum 
threshold value for any association in the unpermuted datasets. The threshold is chosen using permutation 
analysis but can act as a dial, increasing or decreasing the number of associations (4). 
 
Relevance networks can be used for analysis of gene expression dynamics (16). The primary motivation 
for studying gene expression dynamics is that static expression levels may not provide all the information 
required for identifying important relationships. For instance, consider the hypothetical example in which 
gene A codes for an enhancer protein that upregulates the expression levels of gene B. Since the 
expression level of B can be high or low, simply examining the correlation between the statical patterns of 
gene expression does not enunciate such relationships. Linear correlation coefficients are used as the 
measure of association. For dynamic analyses, slopes are calculated between each adjacent pair of 
expression data points yielding a dataset where each row is the time series of a particular gene’s 
expression dynamics. Pair-wise Pearson’s correlation coefficients are then calculated between all possible 
combinations of rows. They are then squared after which the original sign is appended to indicate 
negative or positive correlation (16). 
 
Correlation coefficients are sensitive to outliers which can bias downstream data analysis. Two symmetric 
outliers can artificially raise the correlation coefficient of an otherwise nonlinear distribution. An entropy 
based filter is used to remove genes with outlying values by ranking the genes based on calculated 
entropies and discarding the bottom 5% from the analysis. Other issues pertinent to dynamic analysis 
include the issue of stasis. Most of the genes do not exhibit a change in their expression values over time, 
and this may lead to seriously misleading analyses as genes that remain stationary together can lead to an 
artificially high degree of association. To address this issue, the stationary points are filtered out by 
setting an exclusion range around the zero slope range. Since many data points are removed, the 
remaining data can become very sparse making spurious associations possible (16). This method has been 
used to study the effect of anti cancer agents on genes in cancer cell lines measured using microarray 
analysis (17). Specific clusters were found through analysis of RNA expression and anticancer agent 
susceptibility. A putative link was also found between a single gene and anti cancer agent susceptibility.  
 
There are many advantages to using relevance networks. Features of more than one data type can be 
represented together. For example, if a strong association exists, a link can be visualized between systolic 
blood pressure and the expression level of a particular gene. Features can have a variable number of 
associations. It is possible for a transcription factor to be associated with more genes than some 
downstream factor.  This can be contrasted with clustering methods discussed earlier which can only link 
each feature to one other feature, typically the one that it is most strongly correlated to but not to other 
links. This algorithm allows visualization of negative as well of positive associations, lack of which was 
one of the strongest drawbacks of the other methods (4).  
 
Disadvantages include the degree of complexity observed at lower thresholds at which many links are 
possible between genes, linking them all together in a single network. Completely connected components 
of these graphs known as cliques cannot be found easily. Further, there is no modeling of noise making 
correlation coefficients calculated from low intensity expressions similar to high intensity expressions 
(17). Another serious limitation of using relevance networks in dynamic analysis is the exclusion of 
outliers. Outliers may sometimes be a true indicator of biological function as for instance when a gene 
acts as a step function. They may also be present when a gene or a pharmaceutical agent acts only on a 
single cell line. Therefore some of the valid hypotheses may be missed in order not to have a high false 
positive rate. 
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Nearest Neighbors 
This method can be used in an unsupervised manner; however it is usually used in a supervised manner to 
determine genes that have functional properties similar to designated queries. For example, an ideal gene 
pattern might be one that is highly expressed in one condition and expressed at low levels in another 
condition. All the genes that are being analyzed can be compared to the ideal pattern and ranked based on 
their similarities. This method was used to distinguish acute lymphatic leukemia from acute myelogenous 
leukemia in one the first publications that showed how microarray analysis can assist in difficult clinical 
diagnosis (15).  
 
Although this technique results in a set of genes that splits the data into two distinct sets, it does not give 
the smallest set of genes that most accurately makes the splits. For example, the expression levels of two 
genes might split the two conditions perfectly, but these two genes may not be the ones closest to the 
idealized query (4). This technique also finds use in toxicogenomics. Tissue exposed to various 
compounds that are known to induce toxicity at different time points as well as normal tissue is subjected 
to microarray analysis and makes up the training set that creates an implicit model of toxicity. Newer 
compounds can be tested on these tissues (on a high throughput basis) and the distance of the expression 
patterns from the training set can be calculated to make decisions on the similarities of mechanisms of 
toxicity.  
 
Support Vector Machines 
Support Vector Machines (SVM) addresses the problem of finding combinations of genes that better split 
the dataset into distinct groups. Using previous information about gene expression, the SVM learns 
expression features for a specific class and then classifies the genes based on their expression levels as 
either included in the class or excluded from it. As the SVM learns to distinguish between class members 
and outliers, an optimal hyper plane is drawn to divide these points. Even if it is not possible to use the 
genes alone to create the separation, combination of features of the genes may be used to make the 
delineation possible. Each biological sample is considered as a point in multidimensional space in which 
each dimension is a gene and the coordinate of each point is the expression level of the gene. Using 
SVMs this multidimensional space acquires more dimensions based on mathematical combinations of the 
gene expressions. The goal of this method is to find a plane that perfectly splits two or more sets of 
samples. Using this method, the delineating plane has the largest possible margin from samples in the two 
conditions and therefore avoids data over-fitting which has been discussed previously as one of the 
problems associated with supervised methods of microarray analysis. The SVM software is included in a 
package called GIST and can be downloaded from Columbia University.  
 
Since the number of genes being analyzed in microarray experiments is very large, it might not always be 
possible to split them up into two separate groups. The total number of features available in the dataset is 
expanded by this method by combining genes using mathematical operations called kernel functions. For 
example, in addition to using the expression levels of two genes A and B, the combination features A x B, 
A/B, (A x B) 2 etc can also be used to effectively separate the dataset into two biologically distinct 
groups. The dot product of two normalized vectors if often seen to be the most effective way to measure 
similarity between genes as can be seen in Hierarchical clustering (12). Other higher powers of kernel 
functions have also been explored previously (14). Features for all d-fold interactions that take place in 
the dataset (where d is any positive power used in the kernel function) are taken into account and multiple 
iterations are performed before an optimal kernel function is derived. Although SVMs with higher power 
kernel functions are more effective than simpler ones, none of them correctly identified all the genes 
analyzed. Another concern in classification schemes arises from the relative imbalance of true positives 
versus negatives in the dataset. In such cases where the magnitude of noise in the negative data set 
exceeds the magnitude of the positive signal, incorrect false negative classifications confound the data 
analysis. In case, it is not possible to generate the delineating plane, a soft margin is implemented which 
allows some members of the training set to be misclassified. The soft margin along with the modified 
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kernel function, which includes a diagonal element to correct for the imbalance between the number of 
positive and negative objects in the dataset, enable more optimal delineations. One problem when a 
higher kernel function is used to split to data set is that even though the function may be mathematically 
sensible, its biological interpretation is extremely difficult. 
 
Conclusion 
The field of microarray expression analysis is a booming one and the literature is filled with novel 
algorithms as well as potential uses of this data in drug discovery and clinical diagnosis. The goal of this 
short review is to provide an introduction to the different aspects of data analysis and mining to yield 
useful information. I have discussed in detail the more popular methods while briefly alluding to the 
numerous other techniques in existence. This review also seeks to provide a framework for evaluating 
novel methods that may be proposed. Algorithms may be supervised or unsupervised depending on the 
extent of external information used to drive the analysis. The algorithms can be used for static or dynamic 
analysis, at the level of single or multiple genes or at the genomic level. The primary challenge is to apply 
these techniques in a manner than will provide reliable answers to questions of biological interest.  
 
Uses for supervised method are easy to imagine. One example to illustrate this is the use of supervised 
methods for hypotheses in toxicogenomics. For instance, hypotheses such as ‘some genes in the genome 
influence liver metabolism of a particular compound’ can be answered with a technique that finds genes 
whose expression levels are markedly different between samples with drug and without. This question is 
a critical one in pharmacokinetic analysis of compounds that go through the clinical pipeline of most 
pharmaceutical companies. A second use is in the development of diagnostic tests to determine 
biomarkers for specific diseases such as ‘a combination of gene expression measurements that accurately 
distinguish malignant from non-malignant tumors’. The use for unsupervised methods is less intuitive 
because the questions answered by such algorithms are less direct. For example questions about the 
number and type of responses in a period of time after treatment with a pharmacological agent cannot be 
found in a supervised manner. These techniques survey all genes and cluster them together based on 
expression patterns. True genetic regulatory networks can be found by methods such as Bayesian 
networks which have not been discussed here.  Since there are no ideal answers being sought, it is not 
clear which method needs to be used. However, unsupervised methods can be instrumental in the early 
discovery process.  
 
These challenges in data analysis at the level of data normalization, determining ideal analytical 
techniques is a short term one and after the functional genomics pipeline has been established, the rate 
limiting step shifts to post analytical challenges. The findings from microarray analysis need to be linked 
to other aspect of the discovery pipeline. Finding a ‘list of genes’ from the microarray analysis should not 
be the end in itself and should be validated by conducting relevant biological experiments such as PCRs, 
northern blots etc, numerical certification of the results using alternate techniques and by linking the data 
to other sources of information such as Entrez, Locuslink, GO, Genbank in order to improve the range 
and conclusions that can be drawn. Techniques are also emerging to reconstruct networks of genetic 
interactions in order to create integrated and systematic models of biological systems (18). 
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Figures describing techniques discussed in the paper 
 
 

 
 
Fig 1: Experimental protocol for microarray analysis. Slight differences exist for oligonucleotide microarrays and 
cDNA microarrays (4) 
 
 
 

 
 
 
Fig 2: Dissimilarity measures used for clustering analysis. 2a represents Euclidean distance 2b represents Pearson’s 
coefficient and 2c represents mutual information (4) 
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Fig 3: Hierarchical Clustering analysis that separates genes into clusters based on similarity. Red indicated 
upregulation while green indicated downregulation of the gene (4). 
 
 
 
 

 
Fig 4: Self organizing networks find variable sized clusters of genes that are similar to each other, given the number 
of clusters that need to be found (4) 
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Fig 5: Relevance networks find and display pairs of genes with strong positive or negative correlations and then 
construct a network of these gene pairs. The strength of the correlation is proportional to the thickness of the lines 
between the genes, with red indicating a negative correlation (4). 
 

 
Fig 6: The nearest neighbor method first involve construction of hypothetical genes that fit the individual patterns, 
and then finds genes that are the most similar to the hypothetical genes.  
 

 
Fig 7: Support Vector machines try mathematical combination of genes to find the line that best separates biological 
samples 
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