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Research on microarrays or gene chips presents a challenge for biologists in functional 
genomics: because the images generated from microarray experiments are so visually 
complex that manual comparisons are infeasible, computational tools are required to 
examine microarrays.  For the past several years, there has been an explosion in the 
numbers of studies on microarray computational tools (Eisen et al., 1998; Burgess, 2001; 
Risinger et al., 2003; Wouters et al., 2003; Yeung et al., 2004; Saidi et al., 2004; Girolami 
and Breitling, 2004; Stoyanova et al., 2004; Tan et al., 2004; Busold et al., 2005).  In 
general, four common themes in microarray analysis can be identified.  These four 
themes consist of 1) detection of differential expression, 2) pattern discovery, 3) class 
prediction, and 4) inference of regulatory pathways and networks (Slonim, 2002). 
 
For the pattern discovery theme, computational tools roughly fall into two major 
categories.  One is multivariate projection methods based upon projections of high-
dimensional data in a lower dimensional space and plotting both genes and samples in 
this lower dimensional space using the biplot (Chapman et al., 2002).  This projection 
into a subspace of low dimensionality can account for the main variance in the data.  The 
other is cluster analysis methods. 
 
This paper discusses approaches in the first category, multivariate projection methods; 
however, tools in the second category may be mentioned for comparisons.  The first part 
of the paper provides a brief overview of the multivariate methods.  Then, algorithms of 
several major multivariate approaches are presented in the second part.  The following 
part summarizes advantages and drawbacks of multivariate methods with a comparison 
with cluster tools.  The final part is a conclusion. 
 
 
I.  A Brief Overview of Multivariate Projection Approaches 
 
The multivariate projection methods include principal component analysis (PCA), 
correspondence factor analysis (CFA), spectral map analysis (SMA), partial least squares 
(PLS) method, and some other variants.  Initially, all of these methods were developed in 
either statistics or other academic areas, but recently used in microarray analysis.  
Multivariate projection methods help to reduce the complexity (dimensions) of highly 
dimensional data (n genes versus p samples) and provide means to identify gene patterns 

or subjects in the data.  Projected data are typically displayed in a biplot (genes and 
samples) in a new space.  
 
PCA is the oldest and best known of the multivariate projection techniques.  Historically, 
PCA dates back to Pearson (1901) and Hotelling (1933).  This approach tries to identify 
components that explain the variance in the data.  The central idea of PCA is to reduce 
the dimensionality or complexity of a data set, while retaining as much as possible of the 
variation present in the data.  The dimension reduction technique is accomplished by 
introducing a new set of variables “principal components” that are linear combinations of 
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the original variables and uncorrelated to each other.  In other words, PCA reproduces the 
total variance among a large number of variables using a much smaller number of 
unobservable variables or dimensions called latent factors.  Principal components can be 
determined with different methods such as singular value decomposition (SVD) or some 
other algorithms.  For the just past three years, numerous papers, for example, Peterson, 
(2003), Barra (2004), Saidi et al., 2004, Tham et al. (2003), Girolami and Breitling 
(2004), and Hubert and Engelen (2004) have applied this method in microarray studies. 
 
In early 1970s, J. P Benz´ecri developed CFA method for contingency tables and in a 
sense decomposed the χ2 statistic.  Therefore, distances between objects in CFA have a χ2 
distribution.  The method has been widely employed to multivariate data analysis in 
sociology, environmental science, and marketing research.  Kishino and Waddell (2000), 
Fellenberg et al. (2001), Peterson (2002), Tham et al. (2003), Perelman et al. (2003), 
Wouters et al. (2003), Tan et al. (2004), and Busold et al. (2005) introduced the method 
to the investigations of microarray data by displaying the associations between genes and 
experiments.  Since CFA was primarily designed for analyzing contingency tables, it can 
reveal the association both between and within all the variables (genes and experiments) 
simultaneously. 
 
Like CFA, SMA was originally developed in 1970s.  This method was developed not for 
biological research either, but for the display of activity spectra of chemical compounds 
(Lewi, 1976).  In the past, SMA has been successfully applied to a wide variety of 
problems, ranging from pharmacology (Lewi, 1976), virology (Andries et al., 1990), to 
management and marketing research (Faes and Lewi, 1987).  Thielemans et al. (1988) 
have compared SMA with PCA and CFA, using a relatively small data set from the field 
of epidemiology.  Recently, Wouters et al. (2003) and Peeters et al. (2004) applied this 
multivariate projection method to microarray analysis.  They all argued that SMA would 
be a promising new tool for microarray data analysis. 
 
PLS is another well-known dimension reduction technique.  Wold (1975a, 1975b) 
developed the PLS approach initially used for modeling information-scarce situations in 
social science but recently employed in biochemistry.  The method relates the data matrix 
X to a y-response that can be either a single y or multiple Y, i.e., generating a model that 
predicts y or Y from X.  In the computer literature jargon, PLS is known as a supervised 
method in that it uses both the independent and the dependent variables, whereas PCA is 
an un-supervised method that considers only independent variables.  Datta (2001), 
Nguyen and Rocke (2002), Park et al. (2002), Johansson et al. (2003), Pérez-Enciso and 
Tenenhaus (2003), Man et al. (2004), Tan et al. (2004), and Nguyen (2005) have applied 
this statistical method to microarray data analysis. 
 
 
II. Algorithms 
 
Due to space limit of this paper, exhaustive explanations of these methods will not be 
presented; however, a review of the basic elements and major structures of their 
algorithms is necessary to understand their capabilities in microarray analysis.  Concise 
presentations of the algorithms will be given below. 
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a) Principal Component Analysis (PCA) 
 
To demonstrate the PCA algorithm, we start to denote Mr×s as the matrix containing the 
original expression levels mij for r genes (rows) in each of s different biological samples 
(columns).  We also define two diagonal matrices with row weights Wr and column 
weights Ws, which diagonal elements are the weight coefficients associated with the rows 
and columns of the matrix M.  Usually, the weight coefficients are nonnegative.  For an 
unweighted analysis, the weights are obtained by Wr = diagonal(1/r) and Ws = diag(1/s).  
Alternatively, for weighted analysis the diagonal elements of Wr and Ws can be set to 
appropriate weighting schemes.  PCA is characterized by constant weighting of row 
weights Wr and column weights Ws. 
 
In PCA, column centering is applied.  Centering is defined as a correction of M for a 
mean value to yield the centered matrix Y.  In column centering, the matrix Y = M -
1rn Ts Ts contains deviations from the weighted column means n T

s
= 1 T

r
W T

r
M.  In addition, 

column normalization, or standardization, is employed.  In terms of normalization, the 
original matrix M is divided by the square root of the mean sums of squares yielding a 
normalized matrix N.  In column normalization, the normalized results is obtained as N = 
MC 1!

s
, with the weighted column-norm Cs, defined as Cs =diag((MT)2Wn1n)1/2.  The 

effect of column normalization in the column space is to weight each column dimension 
proportional to the inverse of its mean sum of squares.  Column normalization after 
column centering is a standard operation in PCA. 
 
The next step is factorization.  Factorization of N yields factors that are orthogonal to one 
another, accounting for a maximum of the variance of the data.  Matrix M is submitted to 
singular value decomposition (SVD) which transfers it into the product of three matrices 
U, Λ, and V as shown in equation (2.1): 
 

W 2/1

r
MW 2/1

s
 = UΛVT    (2.1), 

 
where U stands for the eigenvectors of MM′, V for the eigenvectors of M′M, and Λ is a 
diagonal matrix containing the eigenvalues of M.  Λ is an p×p matrix of singular values, 
p being the rank of W 2/1

r
MW 2/1

s
.  For U and V, we have UTU = Ip and VTV = Ip.  

Consequently, we obtain (W 2/1

r
U)TWr(W 2/1

r
U) = Ip and (W 2/1

s
V)TWs(W 2/1

s
V) = Ip. 

 
After the factorization, the final step is projection.  With the above matrices, U, Λ, and V, 
we can project our data into a new space.  In the projection, the biplot for PCA is 
constructed using combinations of two factor-scaling coefficients α and β.  We set α = 1 
and β =1 with symmetric eigenvalue scaling; α = 1 and β = 0 with asymmetric unit 
column variances; and set α = 0, β = 1 with asymmetric unit row variances respectively.  
In the new space, the weighted factor scores S are obtained from equation (2.1) by S = 
W 2/1

r
UΛα.  We can get factor loadings (i.e., correlations) L for FCA by L = W 2/1

s
VΛβ.  

An alternative way to get S and F can be S = MW 2/1

s
VΛα-1 and L = W 2/1

r
UΛβ-1.  The 
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latter form is required for positioning supplementary rows or columns by setting their 
respective weights to zero.  These are the major computational features of PCA method 
for construction of the biplot, which reduces the dimensions of the microarray data. 
 
b) Correspondence Factor Analysis (CFA) 
 
Again, let Mr×s denote the matrix containing the original expression levels mij for r genes 
(rows) in each of s different biological samples or hybridizations (columns).  The 
following mathematical manipulation is to embed both rows and columns of Mr×s in the 
same space.  The first two or three coordinates of this space contain the bulk of the 
information on the microarray data.  Let ξi and ξj denote the sum (or the mass) of the ith 
row and jth column, respectively.  By ε , we denote the grand total of M.  The mass of the 
jth column, i.e., the sum of row j, is defined as ψj = ξj /ε , and likewise the mass of the ith 
row is θi = ξi/ε.  The basis for the calculation is the correspondence matrix D with 
elements dij = mij/ε .  Then, we derive a matrix E with elements eij = (mij - θiψj)/ ji

!" .   
 
Next step relies on the generalized singular value decomposition (SVD) as a factorization 
method.  The generalized SVD of this matrix E is defined as E(S) = UΛVT.  That is, E is 
transferred into the product of three matrices U, Λ, and V.  Here again, U is the 
eigenvectors of EE′, V the eigenvectors of E′E, and Λ is the diagonal matrix containing 
the eigenvalues of E.  The elements of Λ, ρk (k=1,2,…,2n), can be ranked from the 
largest to the smallest. 
 
Just like in PCA, with the above matrices U, Λ, and V, we project the collected data into 
a new space.  The coordinates for gene i in the new space are then given by sik = 
ρkµik/ i

! , for k = 1,..., J, where µik represents the kth column in U.  Hybridizations are 

viewed in the same space with hybridization j given coordinates tik = ρk νjk/ j
! , for k = 

1,..., J, where νjk is the kth column in V.  These coordinates are entitled principal 
coordinates.  In the new space, we plot only the first two or three coordinates.  Now the 
reduction of dimensionality of microarray is achieved.   
 
To make it simple, CFA summarizes high-dimensional data into a low-dimensional space 
while maintaining the main information by representing the maximum variability in the 
dataset.  The application of CFA to microarray data can help to explore two way 
intricateness between genes and samples or hybridizations.  By combining variables, we 
can extend CFA to analyzing multiple-table data.   
 
c) Spectral Map Analysis (SMA) 
 
Just like in the computational frameworks for PCA and CFA, we denote Mr×s as the 
matrix containing the original expression levels mij for r genes (rows) in each of s 
different biological samples (columns).  In addition, the row weights Wr are obtained by 
Wr = diag(M1p/1 Tn M1p) and column weights Ws obtained by Ws = diag(1 T

n
M/1 T

n
M1p).  

The spectral mapping is characterized by constant weighting of row weights Wr and 
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column weights Ws, or weighting by some properly chosen weighting factor by 
researchers.  
 
Then, logarithmic reexpression is applied to matrix M.  That is, data in M are 
transformed to logarithms.  M with mij elements is reexpressed as a new matrix N, with 
elements nij = log(mij).  Logarithmic reexpression allows data in different physical units 
to be compared to one another.  In addition, in many natural systems, changes occur on a 
multiplicative rather than an additive scale.  This reexpression corrects for positive 
skewness and reduces the effect of large influential values.   
 
The next step is to employ double centering for both row and column to obtain a doubled-
centered P from the reexpressed matrix N.  The matrix P is obtained by P = N – 1rn Ts  - 
n T
r

1 T
s

 +µ1n1 Ts , where the weighted row means n T
s

 = NWs1s, the weighted column means 
n T
s

= 1 T
r

W T

r
M, and the global weighted mean µ = 1 T

r
W T

r
NWp1p.  The double-centering 

transformation in SMA is symmetric with respect to the rows and columns of the data 
table.  As a result, all absolute aspects of the data are removed.  What remains are 
contrasts between the different rows (genes) and between the different columns (samples) 
of the data table. 
 
In addition, global normalization is employed.  The original matrix N is divided by the 
square root of the mean sums of squares yielding a normalized matrix Q.  Normalization 
for the weighted global norm q = (1rWrN2Ws1s)1/2 yields the global-normalized matrix.  
Subsequently, the matrix Q is submitted to singular value decomposition (SVD) that 
transfers it into the product of three matrices, which we denote as U (the eigenvectors of 
QQ′), V (the eigenvectors of Q′Q), and Λ (the diagonal matrix containing the eigenvalues 
of Q): 
 

W 2/1

r
QW 2/1

s
 = UΛVT    (2.2) 

 
With the above matrices, U, Λ, and V, we can project our data into a new space.  In the 
new space, the weighted factor scores S are obtained from equation (2.2) by S = 
W 2/1

r
UΛα.  We can get factor loadings L for FCA by L = W 2/1

s
VΛβ.  For the factor-

scaling coefficients α and β in the above equations, researches can select either 
symmetric scaling with singular values (α = 0.5, β = 0.5) or asymmetric scaling with unit 
column variance (α = 1, β = 0).  If the symmetric scaling is used, distances between row 
points and the correlation structure of the column variables are not fully reproduced.  
This distortion is most pronounced when the ratios between the eigenvalues (Λ2) 
associated with the axes of the biplot are very large or very small.  In the asymmetric 
scaling case, only distances between row points are preserved. 
 
d) Partial Least Squares (PLS) 
 
In fact, partial least squares (Wold, 1975) are alternatives to Ordinary Least Square (OLS) 
in ill-conditioned linear models.  Traditional statistical methods such as OLS for 
classification do not work when there are more variables than there are samples.  Gene 
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expression data from microarrays characteristically have many measured variables (genes) 
and only a few observations (experiments).  Thus PLS can be a feasible option. 
 
PLS method estimates an orthogonal basis for the covariates, which depends on both the 
covariate and response value.  Several equivalent algorithms for computing partial least-
squares have been published in the literature.  Here, a “classical” or traditional version of 
the algorithms is presented.  Actually, the essence of all of these PLS algorithms are the 
same.  That is, the development of partial least squares was motivated by a representation 
of the standardized response vector Y and the predictor matrix X. 
 
The algorithm is briefed as follows.  PLS is developed based on the regression between 
the scores for the two variable matrices, i.e., the descriptor or independent variable matrix 
X and the response or dependent variable matrix Y.  In microarray analysis, for instance, 
the independent variable can be genes or expression levels, while the dependent variables 
may be some specific phenotypes or cases.  This method is based on the projection of the 
original multivariate data matrices X and Y down onto smaller matrices that hold the 
coordinates of the new axes.  Mathematically, this projection is realized by resolving X 
into the product of smaller matrices, T (the scores matrix, which holds the coordinates of 
the new axes) and P (the X-loading matrix, which contains the directions of the axes and 
shows the influence of the x in each component), and similarly, Y into the product of U 
(the scores matrix) and Q (the Y-loading matrix), as shown below in equations (2.3), 
(2.4), and (2.5).  This model can be considered as consisting of outer relations (X and Y 
individually) and an inner relation (2.5) which links the two variable matrices.   
 

X = TP + E (the outer relation)  (2.3), 
Y = UQ + F (the outer relation)  (2.4), 

and 
U = T + H (the inner relation)  (2.5), 

 
where matrices E, F, and H, entitled “residual” matrices, contain the model error and 
random noise. 
 
Moreover, the PLS calculations can introduce an auxiliary matrix W (PLS weights) that 
expresses the correlation between U and X and is used to calculate T.  The PLS model 
can also be constructed using the singular value decomposition (SVD).  With the 
assistance of PLS, X and Y are replaced by T and U which have better properties, i.e., 
orthogonality, and which also span the multidimensional vector space of X and Y, 
respectively.  Hence, the intention is to describe X and Y, as well as possible by making 
E  and F  respectively, as small as possible, and at the same time obtain a useful 

relationship between X and Y.  E  and F  are length or norm of E and F, defined by 

E  =  E E • = 22

2

2

1
...

n
eee +++ and F = F F • = 22

2

2

1
... nfff +++  in linear 

algebra, where e1, e2,…, en, and f1, f2, …, fn are entries of E and F, respectively.  Via the 
projection, data reduction is achieved. 
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III. Strength and Limitation of Multivariate Projection Methods 
 
Both of the predominant merit and drawback of the multivariate projection methods are 
simultaneously embedded in their algorithms: reduction of data dimensions.  This 
reduction simplifies the overwhelming data obtained from microarray experiments, while 
the simplification may omit some important biological links or properties of gene 
expression.  Another merit of multivariate analysis is that these models can handle data 
when information (for example, some gene expression) is missing.  Projection methods 
generally aim at explaining the major trends in the data while ignoring minor fluctuations.  
Nonetheless, the treatment on missing information and minor fluctuations can lower the 
sensibility of the models. 
 
Another limitation of some of these methods is that their algorithms apply logarithmic re-
expression.  Consequently, contrasts at a less reliable level of gene expression are 
considered to be of equal importance to contrasts at a more reliable level (Peeters et al., 
2004).  A further limitation is that some data assumptions underlying these multivariate 
methods highlights their lack of biological validity (Girolami and Breitling, 2004).  
Pérez-Enciso and Tenenhaus (2003) argued that there is no guarantee that dimension 
reduction techniques provide researchers with a fully meaningful biological response.  
Consequently, it is difficult to make biological interpretation of some of the results 
obtained via these methods.  Moreover, except for a couple of PLS applications, existing 
investigations using these approaches have been mainly limited to small data sets.  There 
can be other challenges if these methods are employed to large data sets.   
 
Contrast to multivariate projection approaches, cluster analysis methods, which include 
agglomerative hierarchical clustering analysis (HCA), self-organizing map (SOM), and 
support vector machines (SVM), are more widely used.  However, widely applications do 
not mean that cluster methods are superior to multivariate projection approaches.  The 
cluster analysis methods have their own limitations.  First, these methods produce results 
that are highly dependent on the distance measure and clustering techniques that are used.  
Multivariate methods are less dependable on measures and the techniques used.  A 
second limitation is that clustering methods, especially hierarchical clustering, are 
sensitive to datum noise (Segal, 2003), whereas multivariate projections models are much 
less sensitive to data noise.  In reality, one of the key statistical concepts highlighted by 
the microarray experiment is that data are inherently noisy and collinear, and that 
randomness is inherent in any sampling process (Bergeron, 2003).  From this perspective, 
multivariate methods have an advantage.  Third, the clustering is rather local than global 
(Segal, 2003).  Fourth, in cluster models, each gene has to be assigned to only one cluster, 
but some genes could have fallen into two or more clusters.  Multivariate approaches are 
relatively flexible.  Finally, conventional clustering methods only allow for classification 
of either genes or biological samples alone, but do not allow interpretations for the 
association between genes and samples (Wouters et al., 2003).  In some sense, 
multivariate methods seem to have the same limitation. 
 
Essentially, both multivariate projection and cluster methods are “simplification” 
approaches for tremendous and complex microarray data but via different channels.  The 
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projection algorithms achieve the goal by “reduction,” while cluster ones reach the 
objective by “grouping” or “classification.”   
 
 
IV.  Conclusion 
 
For microarray analysis, the good news is that there is a wide range of approaches 
available.  However, too many tools can confuse researchers.  The appropriate choice of 
tools depends both on the data available and on the goals of the research.  In microarray 
studies, if resources allow, researchers may consider using some approaches together.  
This point has already been seen in the microarray literature.  Peterson (2002) argued that 
a certain multivariate method could augment cluster analysis in the search for unique 
expression profiles among named genes or ESTs.  Some others indicated in their 
investigations that multivariate projection approaches and cluster tools might supplement 
to each other. 
 
At present, microarray analysis tools still have serious limitations and no single method, 
or even a set of algorithms, can be recommended to exclusion of others (Meltzer, 2001; 
Wouters et al., 2003).  Unless a brand-new algorithm being developed, there is no one-
size-fits-all solution currently and very possibly in the near future, due to the limitations 
inherent in their algorithms by nature.  Although there has been noticeable progress in 
developing statistical methods to handle microarray data, the search for new methods and 
improvement of existing tools will still be a subject of active investigation in the future. 
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