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Introduction 
 
 As we learn about the human genome and the protein sequences that it encodes, 
we are discovering that the Central Dogma of molecular biology is a useful but 
underpowered description of how proteins are prepared in vivo.  Going from gene to 
mRNA and from mRNA to protein there are a myriad of biological interactions that 
complicate our understanding of the underlying systems. 

A major factor complicating our understanding of biological systems is chemical 
modification of proteins after translation.  Chemical modifications to proteins are not 
coded in the mRNA and they occur through protein-protein interactions.  These post-
translational modifications (PTM) can occur during or after a protein has folded, and they 
can take place in almost any subcellular region.  PTMs are central in modulating almost 
every type of protein activity: they often control enzyme activity (Blom, 2004), change 
the binding affinity of protein-protein, protein-membrane, and protein-matrix 
interactions, bind individual peptides into larger quaternary structures, and mark proteins 
for destruction.  Biologists studying the impact of PTMs in biological systems are 
challenged to catalogue the many different of PTMs, identify proteins with sites 
amenable to modification, and determine under what biological conditions each PTM will 
occur. 
 The first challenge in investigating PTM is the shear variety of different manners 
by which the amino acid sequence of a protein can be modified.  The canon of molecular 
biology includes only twenty amino acids coded in most genomes, yet as of December 
31st 2004 the RESID database of amino acid modifications contains 378 chemically 
distinct entries. (Garavelli, 2004)  The RESID database includes only direct 
modifications of the amino acids, and does not include post-translational cleavage, 
formation of disulfide bonds, or any other PTM that modifies protein connectivity.  Every 
one of these PTMs has a complex associated biology.  PTMs demonstrate such a plethora 
of chemical properties that it is impossible to characterize then all using any single 
biochemical technique.  Biological investigation of PTMs is also hindered by the fact that 
in vitro studies do not always reflect the complexity of biological systems responsible for 
in vivo regulation of PTMs. 

With so many challenges facing wet-lab approaches to understanding PTMs, it 
has become a major area of research to understand PTMs using informatics and 
computational tools.  Using database analysis of sequence and/or structure information 
allows biologists to formulate avoid wasting time and resources looking for PTMs under 
conditions where they are unlikely to occur.  Scientists ultimately hope to have prediction 
tools that can scan proteome-wide databases and suggest potential PTMs.  Such scans 
must have very high specificity to avoid having false-positive hits overwhelm the useful 
information. 

Variability among PTMs presents a similar challenge to computational methods 
as it does to biological investigation.  Although algorithmic approaches to PTMs need to 
be somewhat retooled for every situation, general methods of pattern recognition have 
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been applied with some success to a range of different PTMs.  Although the enzymes 
differ among PTMs, they are all governed by the same basic physical properties:  
enzymes with substrate-specific binding sites interact with the target protein through their 
size, shape, and electrical properties, and allow some chemical reaction to occur that 
modifies the substrate protein.  The basic problem of predicting PTMs is therefore to 
determine whether a protein contains sites that will be recognized by a particular enzyme.  
The problem of molecular recognition applies broadly to a range of biological problems 
(Karp, 2005) and methods developed for transcription factor binding and protein/protein 
interaction have been applied to this problem with variable success.  The most common 
technique use machine-learning to recognize consensus sequences around known PTMs. 

A more difficult problem, and one that has not been generally addressed, is to 
determine under what conditions a protein will be post-translationally modified.  In 
addition to enzyme-substrate recognition, PTMs depend on the presence of their enzyme 
and often on the presence of particular chemical factors that activate that enzyme.  
Determining the presence of an enzyme is a problem of understanding the genetic 
regulatory network that governs its expression, and determining the conditions for 
enzyme activity requires using biochemical assays to identify the activators and 
repressors particular to each enzyme.  Given these caveats it should be understood that 
this discussion will address only the issue of whether a protein could be a substrate for 
PTM, not whether it will be modified in any particular biological situation. 

Compuational methods have several notable successes in predicting PTMs.  
Sequence motifs, hidden Markov models (HMM), and artificial neural networks (ANN) 
have all been applied with varying degrees of success.  The difficulties for each of these 
methods are discussed later but in general they are found to predict PTMs with very high 
selectivity at the cost of very poor specificity (Blom, 2004).  The fundamental problem is 
that patterns of 10-20 amino acids must be general enough to encompass the space of 
positive sequences with good selectivity.  Such sequences occur at random in any large 
genome or proteome, so that ay method without very high specificity will give an 
unreasonable number of false-positives in any database-wide scan.  Predictive annotation 
of a database on the scale of SwissProt requires superb specificity before predictive 
annotation becomes a reasonable possibility.  Even specificities of > 90% on validation 
data sets will still produce hundreds or thousands of false positive results on huge protein 
databases. 

The difficulties facing computational methods for predicting PTMs come out of 
the physical and biological mechanisms by which PTMs occur.  In general, sequence 
based methods fail to achieve high specificity because they respond positively to 
matching sequences in physical contexts where a PTM cannot occur.  Improvements in 
PTM prediction will come largely from combining a wide range of different types and of 
sources of information.  These may be biophysical information like amino acid size and 
hydrophobicity, enzyme crystal structures, or evolutionary information like the degree of 
conservation around potential sites for PTM.  For example, it has been noted that 
glycosylation and phosphorylation usually to occur in regions lacking secondary 
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structure. (Julenius, 2004, Iakoucheva, 2004)  Truly robust PTM prediction algorithms 
will need to incorporate diverse information as well as an understanding of the genetic 
and other regulatory mechanisms that modulate activity biochemical pathways leading to 
PTMs. 

  PTMs are so varied and occur by so many distinct mechanisms that this review 
will focus on illustrative case-studies instead of providing an exhaustive catalogue.  
Details of all the algorithms will not be discussed, and familiarity with basic techniques 
of machine learning will be assumed (i.e. position-specific weight matrices, Linear 
Discriminant Analysis, and artificial neural networks).  The first example will be N-
terminal myristoylation because it is a relatively easy problem that illustrates the basic 
methods and challenges in PTM prediction.  Phosphorylation, the second example, is a 
common system for enzyme regulation and it presents a set of problems that complicate 
the normal methods of machine learning.  These examples will show how attempts to 
improve predictive models by incorporating physical or other information have failed or 
succeeded, and suggest how additional information may further improve the models. 
 
 
N-terminal Myristoylation – an “easy” problem 
  
 First among the cases studies is a PTM by which an N-terminal glycine is 
modified by addition of myristate.  Myristate is a lipid that modifies interactions between 
the protein and cell-membranes or hydrophobic regions of other proteins.  This PTM has 
been shown to have involvement in virus maturation and development of cancer cells. 
(Bologna, 2004, Boutin, 1997)  The best-studied enzyme catalyzing this type chemical 
reaction is Glycylpeptide N-tetradecanoyltransferase (NMT) [RESID entry AA0059]. 
 This enzyme is an excellent example of how substrate specificity is achieved in 
PTMs.  A cross-taxon study of NMT active sites has determined that the enzyme is 
selective for three regions in 17 amino acids at the N-terminal side of potential substrates. 
(Maurer-Stroh, JMB 2002 p.523-40)  Amino acids 1-6 of the substrate must fit into an 
NMT binding pocket, amino acids 7-10 interact directly with the active site, and amino 
acids 11-17 interact with a hydrophilic region on the enzyme.  Interaction between the 
enzyme and substrate depends very highly on the substrate’s amino acid sequence only at 
the N-terminus. 

The enzyme’s strong dependence on the N-terminal sequence makes this PTM a 
relatively easy target for computational methods using only a short amino acid sequence 
of potential substrates.  Furthermore, because myristoylation can only occur at terminal 
glycine there is no question of identifying the position of the PTM in modified proteins. 

Despite the apparent simplicity of this system there are still physical limitations 
that can lead to false matches by any algorithm using only the primary protein structure.  
Myristoylation can only occur if the N-terminus of the substrate peptide is accessible to 
NMT.  If the secondary or tertiary structure of the substrate blocks the N-terminus and/or 
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recognition sites then myristoylation becomes impossible regardless of how well the 
sequence matches the target motif. 

Sequence motifs were the first approach used to identify myristoylated proteins.  
Based on sequences from myristoylayed proteins an early consensus sequence was found 
that included only the first eight amino acids, and which applied restrictions to only six of 
those eight locations. (Maurer-Stroh, JMB 2002 p.541-57)  In vivo experiments and 
characterization of proteins in cellular extracts, along with the crystal structure of NMT, 
developed further restrictions on the specificity of the enzyme and led to the creation of a 
myristoylation pattern in the PROSITE database.1  Bologna et al. applied the pattern to a 
set of 390 proteins with validated myristoylation and 327 proteins that are not 
myristoylated. (Bologna, 2004)  The PROSITE pattern had sensitivity (Sn) of 94% 
(365/390) and specificity (Sp) of 78% (254/327). 

These results indicate that proteins that are unlikely to be myristoylated if they do 
not match the PROSITE, but specificity of only 78% shows that the PROSITE pattern is 
missing much of the information relevant to myristoylation.  The amino acid restrictions 
applied by the PROSITE pattern are almost necessary for a protein to be myristoylated 
but there appear to be other limiting factors that are not included in the pattern.  It is 
unlikely that the PROSITE pattern is failing to include simple amino acid restrictions, 
cases where a single position is limited to a subset of amino acids, because the pattern is 
able to account for the first amino acid being limited to 9 out of the 20 amino acids.  
More likely is that the pattern misses 2nd or higher order interactions (i.e. required 
pairings of amino acids) or that the necessary information is simply not present in the 
first few amino acids.  Either of these would be the case if specific secondary or tertiary 
structures are necessary for enzyme recognition. 

Seeking to understand the mechanism by which NMT bind to substrates Maurer-
Stroh et al. characterized the active-site of NMT by using crystal structures to compare 
conserved physical features among NMT in a range of species. (Maurer-Stroh, JMB 2002 
p.523-40)  They found that the NMT binds to 17 amino acids, as described earlier, which 
shows that the first six amino acids do not contain the information to predict 
myristoylation with high specificity.  Finding a relatively unrestrictive motif this long 
would have been difficult without a training set much larger than was available for 
creation of the PROSITE pattern.  Physical information about the enzyme was crucial in 
determining what part of the substrate amino acid sequence should be considered in 
predictive models of NMT.  They also used this physical data to develop a classifier with 
a scoring function that summed a traditional probabilistic motif with score penalties for 
deviation from a dozen empirically determined physical rules.  They did not apply to 
their method to a validation set, but Bologna et al. later showed that this is a nearly 
perfect classification. 

Bologna et al. used neural networks to attempt classification based on the amino 
acid sequence of these 17 amino acids. (Bologna, 2004))  They used a leave-one-out 
procedure and achieved Sn 86.7% and Sp of 95.4% using neural networks with 320 input 
                                                 
1 PROSITE pattern PDOC00008 (G-{EDRKHPFYW}-x(2)-[STAGCN]-P) 
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nodes (sparse coding of 16 positions with 20 inputs each), 320 2nd layer neurons, 3 3rd 
layer neurons, and a single output neuron.  Specificity of 95.4% is very high, but it was 
only achieved using a somewhat over-trained classifier with 1,611 degrees of freedom. 

Low selectivity and high specificity is the opposite of what is often seen when 
predicting PTMs and it is important to consider aspects of the algorithm that could have 
led to this result.  It appears that this particular application of ANNs suffers from over-
training even though Bologna et al. used a learning algorithm that restricted how 
precisely the network could fit itself to training data.  The network fit its decision 
boundary too tightly to the training set, so that only sequences very similar to training 
data give a positive result.  Specificity this high is approaching the level needed for 
predictive annotation of an entire database, but it still leaves much to be desired. 

Both Maurer-Stroh et al. and Bologna et al. have taken classification schemes one 
step further by directly incorporating the physical properties of amino acids.  Bologna et 
al. extended their neural network approach by creating ANNs using binary input vectors 
that encoded amino acid properties (large/not large, hydrophobic/not hydrophobic, etc.) 
for each position  Their property-based ANNs used 640 input nodes and a total of 3211 
independent weights.  They combined the results from the original ANNs with property-
based ANNs to create an aggregate classifier.  Bologna et al. test both classifiers using a 
leave-one-out procedure on the same data set as the PROSITE pattern above.  The 
algorithm by Maurer-Stroh et al. had Sn 96% and Sp 97% and the ANN had Sn 94% and 
Sp 98%.  These two results are essentially identical. 

Both algorithms achieve similar results by incorporating physical parameters, but 
they each do so in completely different manners.  The rule-based approach by Maurer-
Stroh takes the high selectivity of a sequence motif and augments its specificity by 
adding physical rules derived from outside information.  It is unintuitive that adding 
additional degrees of freedom to the ANN improves the performance of an already over-
fit classifier.  It appears that physical parameters generalize more effectively than the 
amino acids themselves.  Additional degrees of freedom allow the network to fit itself 
more tightly to each input vector, but because many amino acids share each physical 
property every training vector effectively “spans” a larger region of the input space. 
 That both physical methods give the same result shows that the precise method of 
incorporating physical data is not important.  There is useful information encoded in the 
physical parameters that can be identified and applied by any sufficiently powerful 
machine-learning algorithm. 
 There are several issues that may be preventing even the best classifiers above 
from achieving better results.  The first, and the most difficult to address computationally, 
is that the biological information may be incorrect.  If a protein is myristoylated only 
under a limited set of conditions or only in a specific tissues then it may appear in the 
database as negative even when it should be classified as positive.  Estimating the effect 
of these mistakes may be possible by examining the rate at which protein annotations 
change between myristoylated and not myristoylated, but a precise determination is not 
possible.  The other factors limiting classifier performance may be a small training set, 
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insufficient flexibility of the models to form the decision boundary through input space, 
or that the first 17 amino acids simply do not contain all of the necessary information. 
 It is unlikely that the models are insufficiently flexibility because the ANN has a 
huge number of degrees of freedom.  Bologna et al. do not report training error for their 
ANN, but Maurer-Stroh et al. report training error only slightly lower than observed on 
leave-one-out validation.  They point out several “errors” where the annotation is in 
doubt so it is not clear what is causing imperfect performance on the training data. 
 Crystal structures are available for a limited number of the potential NMT 
substrates appearing the data set.  Only two of the false-positives predicted by the ANN 
have crystal structures in the Protein Database (PDB, Berman 2000) (Aa-Conotoxin Piva 
and Caudina arenicola hemoglobin) so there is not enough structural information to 
explore in-depth what structural elements may prevent these proteins from being 
myristoylated even though their sequences appears to fit in the binding site.  Anecdotally, 
the 1st and 2nd amino acids of Aa-Conotoxin Piva are both cysteine and the PDB structure 
shows both cysteines with disulfide bonds to other regions of the protein.  These bonds 
lock the N-terminal region into a buried conformation, which could easily block binding 
to NMT (See Figure 1).  The cysteines do not prevent sequence-based classifiers from 
calling this protein positive because the 3rd amino acid is permissive.  With the 
hemoglobin, the N-terminus lacks 2o structure and lies close to the C-terminus (~7 Ǻ), 
also lacking 2o structure.  It may be that the flexible structure or structural interactions 
specific to this protein interfere with binding to NMT (rigid structures bind their targets 
more tightly due to entropic effects). 

The structural effects that prevent NMT binding may be unique for each non-
myristoylated protein that has a compatible sequence.  A large set of crystal structures 
would be necessary to determine if they share any common structural themes.  Some 
simple rules could be applied when a crystal structure is available.  Verifying for eample 

that no disulfide bonds appear 
within some distance of the N-
terminal glycine is an intuitive 
step that would have eliminated 
the false positive result with Aa-
Conotoxin Piva.  

Figure 1:  The PDB structure 
of Aa-Conotoxin Piva shows 
that disulfide bonds adjacent 
to the N-terminus are likely to 
interfere with sequence 
recognition at that position 
(only backbone atoms and 
Cys side-chains are shown) 
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Phosphorylation 
 
 Phosphorylation is the addition of a phosphate group to a protein, usually at the 
side-chain of serine, threonine, or tyrosine.  This modification is a ubiquitous 
modification that spans every biological kingdom and which is the basic mechanism of 
regulation for a diverse host of enzymes.  Phosphorylation reactions will often rapidly 
activate or deactivate an enzyme in response to regulatory signals.  Phosphorylation and 
the reverse reaction of dephosphorylation are catalyzed by a kinase and a phosphatase 
respectively.  There are over 500 known human kinases, each of which is active under a 
particular set of cellular conditions and specific to its own range of substrates.  The range 
of different kinase specificities makes the problem of predicting sites of phosphorylation 
much more difficult than it was with myristoylation. 
 Every kinase recognizes a distinct protein substrate or set of substrates.  Some are 
specific to a single target (the kinase for Pyruvate Dehydrogenase is associated with and 
targets only that protein) (Berg, 2002 Chapter 17), while others are known to 
phosphorylate hundreds proteins (Protein Kinase A prosphorylates over 250 substrates). 
(Blom, 2004)  Structural studies of kinases have shown that every known kinase shares a 
homologous catalytic core (Berg, 2002 Chapter 10) and that they generally interact with 
only 12-15 amino acids around substrates’ target positions, although a recent study by 
Iakoucheva et al. has found positions enriched for some amino acids with a window 
twice as large. (Iakoucheva, 2004)  These properties make phosphorylation a good target 
for predictive models. 

For the most broadly selective kinases there are enough positive sequences to 
apply machine learning techniques directly.  With more specific kinases that interact with 
only dozens of substrates it is not feasible to develop and validate a predictive model that 
will span the space of ~2012 possible sequences.  Some methods to predict 
phosphorylation by more selective kinases only return hits when the same position is 
likely to be modified in a set of homologous proteins. 

Other approaches integrate physical data and sequence information.  Brinkworth 
et al. have combined kinase amino acid sequences, crystal structures, and known 
specificities to develop a predictive tool PREDKIN that determines the optimal substrate 
sequence for kinase given its amino acid sequence. (Brinkworth, 2003)  Finally, 
Iakoucheva et al. have recently developed an improved predictive model that 
incorporates an estimate of the flexibility or disorder of possible sites of phosphorylation. 
 An early study in 1999 by Blom et al. showed that phosphorylation can predicted 
independent of the particular kinase involved. (Blom, 1999)  They grouped the sequences 
of all known phosphorylation sites as serine (Ser), tyrosine (Tyr), or threonine (Thr) sites 
and identified the most conserved residues for each.  This produces a set of empirical 
rules that demonstrate that there are general conserved patterns with broad applicability 
across the family of kinases.  Methionine, for example, never occurs at the -2 position 
from a tyrosine phosphorylation site but occurs frequently at positions +1 and +3.   
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 This work by Blom et al. led to the development of NetPhos, the oldest tool to 
phosphorylation prediction that is still commonly cited.  NetPhos is a neural network 
system trained to recognize 9-11 amino acids around phosphorylation sites.  The 
complexity of the ANN is not given in the literature but it is safe to expect that the 
number of weight parameters is much larger than the number of positive examples in the 
training set (210 for Tyr sites, 584 for Ser, 108 for Thr).  The ANN implementation by 
Blom et al. achieved Sn 0.70 and Sp 0.68 on Tyr sites, Sn 0.89 and Sp 0.86 with Ser, and 
Sn 0.65 and Sp 0.52 on Thr on their dataset derived from the PhosphoBase database. 
 In the same study, Blom et al. attempted to use ANNs trained on three 
dimensional structures instead of the primary amino acid sequence.  The results were 
unimpressive, with Sn 0.85 – 0.87 and Sp 0.37 – 0.65.  These values are not directly 
comparable to sequence-based method above because there were very few structures 
available for positive proteins (12 Tyr sites for example).  Structural data clearly contains 
useful information for predicting phosphorylation, but this result alone does not 
demonstrate that physical information adds anything to what can already be determined 
using only amino acid sequences. 

All these ANNs have specificity far too poor to for predictive annotation of entire 
databases.  This early work served to show that phosphorylation sites share common 
features and can be predicted in principle.  More recent research has improved on this 
work by developing classifiers specific to individual kinases and by making novel use of 
other sources of information. 
 Both the sequence and structural methods by Blom et al. are limited by the fact 
that they are not specific to particular kinases.  In addition to facing a bewildering variety 
of substrate specificities, this approach is confounded by the fact that both the substrate 
and the kinase must be present together for phosphorylation to occur.  An amino acid 
sequence that would be phosphorylated by some kinase will appear in negative in the 
database if that protein/kinase pair have never been observed in a biological experiment 
(and in fact these sequences will be phosphorylated in in vitro experiments). 
 Yaffe et al. decided to avoid all the problems with creating datasets from 
literature by using only positive and negative results generated by testing a series of 
kinases on peptide library. (Yaffe et. Al, 2001)  Their approach generated a large training 
set, but it has not been established whether peptide screens will accurately reflect 
phosphorylation substrates in vivo. (Blom, 2004)  They published their results as program 
called ScanSite with a position specific weight-matrix for each kinase studied.  Because 
weight matrices are well understood and computationally inexpensive, ScanSite often 
serves as a benchmark for other methods.  It is significant that ScanSite is kinase-specific 
because the sequence specificity of a single kinase spans a smaller volume of the input 
space than the nonspecific training set from NetPhos.  Having a smaller volume that 
gives a positive result will translate directly into fewer false-positives. 
 The most direct extension of NetPhos is NetPhosK, also developed by Blom et al.  
(Blom, 2004)  NetPhosK makes use of the larger databases available in 2004 vs 1999 to 
produce kinase-specific neural networks.  The ANN method is the same as in NetPhos, 
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but NetPhosK brings in additional information by considering the degree of conservation 
of a potential phosphorylated sequence across related organisms.  Changes in 
phosphorylation will usually be associated with significant biological effects through 
changes in enzyme activity or other regulation.  Related species are expected to have 
highly conserved phosphorylation sites among their homologous proteins.  If only a few 
related species have a positively classified site then it is likely to be a false-positive.  
Blom et al. call this approach Evolutionary Stable Sites (ESS) and they expect that this 
approach will improve results by screening out false positives.  

Blom et al. report data from applying NetPhosK to six different kinases with wide 
substrate specificity.  Three of the kinases have small positive training sets (≤ 31 
sequences) and because of limited training diversity the associated ANNs have Sp greater 
than 94% but with very low Sn.  The other three kinases have reasonable positive training 
sets (85, 193, and 258 sequences).  In all three cases Sn is slightly reduced from NetPhos 
but they have Sp ~ 0.9, which contrasts well to the Sp from NetPhos of 0.37 – 0.65.  
Blom et al. compared NetPhosK to ScanSite on a training set for the kinase PKA and 
found that the result from ScanSite had Sn 0.41 and Sp 0.84, while NetPhosK had Sn 0.84 
at the same Sp.  It was not clear from how they did not break down the results whether 
NetPhosK outperformed ScanSite because ANNs are more suited to discovering the 
decision boundary or if ESS is significantly improving specificity. 

The idea of ESS is promising and the results reported by Blom et al. are generally 
positive, but it is impossible to make a strong statement on the method without more 
explicit results.  It would be useful for Blom et al. to report the ROC curves with and 
without using ESS. 

Another novel approach by Iakouchev et al. begins with from the observation that 
phosphorylation sites tend to occur in regions of disordered secondary structure.  
(Iakouchev, 2002)  They also included a range of physical parameters in their model such 
as the degree of surface exposure, amino acid hydrophobicity, and side-chain bulk.  
Using Principle Component Analysis to select features and a variant of logistic regression 
as the classifier, they reported a significant improvement over NetPhos (the version that 
is not kinase-specific) even without incorporating any novel information. 

When Iakoucheva et al. allowed their classifier to make sure of disordered 
secondary structure and other physical parameters they observed a modest improvement 
in the performance of their system.  Defining accuracy as the average if Sn and Sp the 
accuracy of the classifier improved from 74.9% to 76% for Ser phosphorylation sites, 
78.9% to 81.3% for Thr sites, and 81.3% to 83.3%.  These improvements are all much 
larger than the standard error of each accuracy measurement, so there is a small but 
statistically significant improvement by incorporating physical parameters. 

Although the classifier improvement by incorporating a disorder measure is small, 
it is interesting that Iakoucheva et al. note that over 90% of predicted phosphorylation 
sites show a disordered secondary structure.  Disorder calculations are only minimally 
useful for predicting phosphorylation because they contain very little information that 
was not present in the sequence to begin with. 
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Conclusions 
 
Algorithms to predict myristoylation have achieved nearly perfect sensitivity and 

specificity.  In one case crystallographic studies were used to determine the binding 
specificity of the entire binding site of NMT and from that to augment a sequence motif 
with empirical rules.  A completely different method based on artificial neural networks 
gave the same result when it was trained on a combination of sequences and physical 
properties of the amino acids.  

Despite these impressive results, the myristoylation predictors still make mistakes 
that would be easy to avoid if they could incorporate a physical understanding of the 
enzyme/substrate interaction.  The illustrative case of Aa-Conotoxin Piva shows that 
there is further information encoded in the full structure of the protein that is not derived 
from a local amino acid sequence.  Since the predictors are already so powerful, it is only 
proteins that are somehow unusual that are going to be misclassified.  As crystal and 
NMR structures are accumulated it will be interesting to see whether machine-learning 
can extract a complete description of the interactions that determine myristoylation. 

Phosphorylation presents a much harder problem.  Attempts to bring in additional 
information, both in the form of 3D structures and secondary structure prediction have 
met with only limited success.  With such a limited set of 3D structures available it is 
unsurprising that machine-learning cannot extract the important information, but it is 
disheartening that secondary structure prediction is only slightly better than predicting 
phosphorylation for amino acid sequence alone.  Even the best of these methods is far 
from perfect, so clearly there is information missing from the amino acid sequences that 
have been used for training. 

It is not immediately clear how best to improve predictors of phosphorylation.  
One possible approach to the problem of small training sets for highly specific kinases 
would be to use the generic kinase-independent recognition pattern as a template, then 
modify that template for each particular kinase (for example, a Bayesian model could do 
a combination of the generic pattern with observed sequences from some particular 
kinase weighted by the number of available observations).  Another approach could be to 
create boundaries in the decision space that are constrained by simulated docking of 
sequence on the boundary to crystal structures for well-characterized kinases. 

Every type of post-translational modification is essentially the same problem of 
determining protein/protein binding interactions, so the same methods used for 
myristroylation and phosphorylation can be usefully applied to type of PTM.  In every 
case however the same problem of specificity will be encountered.  Normal amino acid 
motifs only simply do not have enough information content to specify binding sites with 
high enough specificity for database-wide scans without a high rate of false positives.  
The information encoded sequence far from the immediate binding region of each 
substrate is very diffuse, and cannot be extracted by machine learning without a huge 
number of examples.  A better approach will be to understand the physical basis of each 
substrate/enzyme interaction and use either predicted or experimental substrate structures 
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as input to classifiers.  As protein structure prediction improves it will become more 
feasible to do structure prediction on entire databases.  Because it is likely that some 
proteins structures will be predicted incorrectly this approach may lead to a problem of 
high specificity and low sensitivity.  It is more likely that a protein would be incorrectly 
folded into structure that does not bind to a PTM enzyme then that it would accidently be 
predicted to fold into a binding conformation (the space of binding conformations is 
much smaller than the space of nonbinding conformations).  A really complete method 
for predicting post-translational modification will always be restricted to those enzymes 
and substrates for which complete structures have been determined experimentally. 
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