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Abstract 
The method of protein structure prediction is critically reviewed with emphasis on 

homology modeling.  The current state of the art techniques and limitations are analyzed 
and possible improvements are suggested. 
 

Introduction 
 Protein structure prediction is one of the most important problems of 
computational molecular biology.  The accurate prediction of the protein three-
dimensional structure (tertiary structure) from the amino acid sequence (primary structure) 
could facilitate rational drug design.  In rational drug design, the ability to predict the 
tertiary structure of the protein from the sequence could facilitate researchers to design 
drugs that can specifically target the key molecule to stop the functioning of the pathway 
in the diseased state or enhance the functioning of the pathway inhibited by the diseased 
state.  This requires a very high accuracy and high-resolution model to be useful.  On the 
other hand, lower resolution model could still give insight into the function of the 
unknown sequence, help design molecular biology experiments, and guide cloning and 
purification design.       

Human Genome Project, founded in 1990 by NIH and Department of Energy, is a 
high-throughput sequencing which produced plethora of information that are made 
available on the Internet database for public use.  The high volume sequencing data 
created by the advancement in computational biology created a lag between the 
availability of sequence data and the determination of the three-dimensional structure of 
the corresponding sequences.  Experimentally determining the three-dimensional 
structure of the protein sequence through x-ray crystallography or NMR spectroscopy is 
expensive and time-consuming.  Protein structure prediction can serve the need of the 
scientific community by providing an efficient alternative to determining protein 
structure of the high-throughput sequence data produced by the Genome Project.   
 

CASP 
Critical Assessment of Techniques for Protein Structure Prediction (CASP) is a 

contest for protein structure prediction, which began in 1994 as CASP1 and subsequently 
held every two years as CASP2 (1996), CASP3 (1998), CASP4 (2000), CASP5 (2002), 
and CAPS6 (2004).  The latest CASP6 took place in December 4-8, 2004 in Gaeta, Italy.  
The latest published result of CASP5 appeared in Proteins: Structure, Function, and 
Genetics Volume 53, Issue S6.  The contest aims to compare various methods for the 
advancement of the field of protein structure prediction.   

The competition is framed so that the three main subfields of protein structure 
prediction can be advanced.  Sequences of the unknowns, which are categorized based on 



the similarity to the already existent three-dimensional models are made available to the 
entrants.  The degree of similarity determines the category and the algorithm used to 
predict the model.  When there is a high percentage of similarity to the already existent 
model, homology modeling is used.  When there is a low similarity, fold 
recognition/threading is used.  Lastly, when there is little correlation between the 
currently available model and the sequence, ab initio method is used.   

Experimentalist determines the structures of the sequences by x-ray 
crystallography or NMR spectroscopy.  The predictors use the sequences and apply their 
implementation of protein prediction algorithm in one of the various categories based on 
the type of the unknown sequence.  Lastly, assessor will analyze the quality of 
predictions by comparing the experimentalist’s experimental result and the predictor’s 
theoretical model using criteria such as RMSD, overall identification, and topology, 
energy considerations such as contacts, H-bonds, similarity of the hydrophobic core, and 
the sequence alignment quality.   
 

Challenges of Protein Structure Folding (Protein Structure Prediction via Ab initio) 
Protein structure prediction is distinct from protein folding problem (ab initio), as 

folding problem is concerned with modeling and predicting the three-dimensional 
structure from primary structure using physical principles.  On the other hand, protein 
structure prediction combines the use of statistical and experimental data to heuristically 
predict and refine the model.  Only when protein structure prediction techniques such as 
homology modeling and fold recognition/threading fails, one resort to predicting the 
structure based on physical principle alone (ab initio / protein folding problem).  

Modeling of protein structure folding is very difficult given the current state of 
computational power and the lack of complete theoretical framework.  To model the 
structure, constituent atoms, bond length, bond angles, and constraints on dihedral angles 
must be considered.  The size of the state space of specific three-dimensional 
conformation is large, because the bond between the neighboring amino acids can be bent 
and twisted in various ways.  If one assumes the state space is searched in a sequential 
search, the theoretical calculation would take much longer than the actual time span of 
few milliseconds that atoms take to minimize the energy state.  The fact that primary 
sequence alone does not fully specify the tertiary structure makes the problem more 
difficult.  For example, chaperonins can induce proteins to fold in specific ways, and 
primary solvent (water or lipid), the concentration of salts, temperature and other 
environmental factors can affect the folding.  Tertiary structure also involves covalent 
bonding through disulfide bridge between two cysteines.  In addition, hydrogen bonding, 
Van der Waals interactions also participate in the formation of tertiary structure.   

Increased computing power is needed to solve the protein-folding problem.  
Current approach to the problem is to develop a super computer (Blue Gene) or use a 
distributed computing (Folding@Home) platform.  Blue Gene is, as of November 2004, 
ranked as the world’s most powerful super computer and provides sustained performance 
of 70.72 Teraflops.  Folding@Home, on the other hand, utilizes the vast unutilized 
computing resources available on the Internet.  The program runs as a screensaver on 
users’ computer and provides computing power and the results of distributed calculation 
are sent to the central server.  Collaboration with Google is expected to provide wider 
user base than currently available.  Both approaches will provide ways to quicken 



computation, but theoretical breakthrough and improved algorithm is essential in solving 
the folding problem.    

For improved algorithm, one could learn from the theoretical framework gained 
from the experimental data.  Protein folding in nature seems to progress by first 
establishing secondary structure (alpha helices, beta sheets, coils and loops), and 
following with the tertiary structure production.  Therefore, to simplify the folding 
problem, one approach is to first convert the primary structure to the secondary structure, 
then build the tertiary structure by examining the interaction among the secondary 
structures.  One could also use the Ramachandran plot to exclude some states as 
impossible states due to the space filling nature of side chains.  Finally, Gibbs Free 
Energy function (deltaH – T*deltaS) can be used as a guiding function.  This is a good 
function to use, because it tends to bring hydrophobic residues inward while bringing 
hydrophobic ones outwards, resulting in higher degrees of freedom for surrounding water 
molecules because the favorable interaction of deltaH outweighs the cost of deltaS.  
When protein folds, the atoms are constrained in a particular state, and therefore the 
entropy is decreased.  The use of these constraints can reduce the state space of possible 
atomic coordinates and make the search problem more tractable.  Rosetta method is an 
example of algorithm used to tackle the ab initio problem.  

Currently, due to the difficulty of the problem and the lack of computing power, 
the use of ab initio is limited to modeling short sequences.  The ability to predict the 
protein structure for larger protein requires better algorithm, improvement in the 
theoretical framework, and increase in computational power.  This is an important 
subfield of protein structure prediction because it could improve the accuracy of 
homology modeling and fold recognition by providing additional information to the 
process of template creation and model refinement.  
 

Homology Modeling 
 Homology modeling is based on the assumption that the sequence that is > 25-
30% similar to already known structure is highly likely to share the similar tertiary 
structure.  Therefore, already existent three-dimensional model in Protein Data Bank 
(PDB) is used as a template and is used to predict the tertiary structure of the given 
sequence.  The initial step is to use the sequence comparison database to find homologues.  
The homologues are then used to identify the template.  The template is aligned with the 
given sequence, and a new model is created by computationally mutating the structurally 
divergent regions (SDR) to amino acid sequence corresponding to the unknown sequence.  
The side chain conformations are added, then the model is refined and evaluated 
(Diagram 1). 
 The accuracy of modeling ultimately depends on the quality of alignment used to 
determine the template and the final model that is created.  In addition, the percentage of 
similarity (structural conservation) between the template and the unknown sequence is 
the key factor.  Lastly, the predictive capability of SDR region and the placement of side-
chain also will affect the accuracy because template cannot be used to determine the 
placement of these regions.  The models are usually sufficiently accurate because most 
biologically important regions are conserved and therefore similar to the structural 
template, when good template match is found.   



The accuracy of the method is expected to increase as more protein structures 
become available.  The increase in the knowledgebase allows increase in the probability 
of finding a better homologue; this will allow matching of a better template that can be 
used to create a model.  In addition, increase in the sequence database will also allow 
better detection of  homologous relationships through techniques such as multiple-
sequence alignments, profiles, and Hidden Markov Models (HMM).  The increase in the 
knowledge is also expected to allow researchers to develop new and better methodologies 
of inferring the homologues.    
 

Homology Modeling: Sequence Alignment 
 Finding homologue in the database, such as Protein Data Bank, SCOP, DALI, 
GenBank, GeneCensus, MODBASE, PRESAGE, SWISSPROT+TrEMBL and CATH is 
the initial step of protein structure prediction.  There are many techniques for doing this.  
BLAST is a pair wise comparison which can detect sequence similarities of  >30%.  
Multiple alignments can be also used, such as HMM and Profile.  Another approach 
involves the use of motif and the use of “signatures” to search for the alignment such as 
eMOTIF.  Pfams, PRINTS and BLOCKS can also increase the chance of finding remote 
homologues that cannot be easily detected using pair-wise alignment such as BLAST.   

Multiple alignments can be used to increase the probability of the match.  PSI-
BLAST first builds profile by searching the database using the unknown sequence, and 
by iteratively searching the database using the search result, it attempts to increase the 
accuracy of the search result.  HMM on the other hand creates a Hidden Markov Model 
for the unknown sequence through multiple alignments and uses the HMM to search the 
database for additional matches.  These multiple-alignment methods outperforms pair 
wise techniques for sequences with similarities that drops below 25%.  

Finding good homology is crucial as subsequent steps of protein structure 
prediction depends on the template being used.  When there are multiple candidates for 
templates selection, creating a phylogenic tree can help in selecting template from the 
subfamily that is most similar to the unknown sequence.  The surrounding environment 
for the template should also be compared to that of the unknown sequence.  Lastly, the 
quality of the template can also affect the decision process.  When there is no match, 
homology-modeling method must be abandoned in favor of ab initio or threading method.  
 

Homology Modeling: Unknown Sequence – Template Alignment 
 Once the template is selected, an optimal alignment of the template and the 
sequence must be made.  Here, the identity of the unknown sequence and the template 
also plays a role as similarity of over 40% gives high accuracy of alignment.  Algorithms 
such as CLUSTAL, BLOCK or FASTA are used in this stage.  Often, multiple structures 
and templates are used to create increase the accuracy of the alignment.  The use of 
multiple structures allows better prediction and reduce gaps in secondary structure 
elements, in buried regions.  Sometimes visual inspection and human intervention is 
necessary to improve the accuracy of the alignment.  The ability to fully automate the 
human-intervention step is one of the goals of the CAFASP.  When it is difficult to 
determine the best alignment of the template and the sequence, the 3D model is generated 
and the model is evaluated rather than determining the alignment accuracy.    
 



Homology Modeling: Generation of Model 
 Once an appropriate template is found, fairly accurate model can be constructed 
using homology modeling algorithms.  There are three major algorithms classes, which 
are all similar in the accuracy of the modeling given the proper template.  In other word, 
the accuracy of the modeling depends on the accuracy of the initial template input.  The 
modeling algorithm should be fast, accurate, easy to automate, and allows incorporation 
of external data (such as secondary structure, and experimental data).   

MODELLER is an example of algorithm that satisfies the spatial restraints.  It 
utilizes the given unknown sequence and matched homology three-dimensional structure 
to predict the unknown protein structure.  It first collects distance distributions between 
atoms in given known protein structure.  Then it utilizes the collected distribution to 
compute the positions for equivalent atoms in alignment, and finally, the result is refined 
using energetic, such as restraints on bond lengths, bond angles, dihedral angels, and 
nonbonded atom-atom interactions due to force field.  MODELLER uses real-space 
optimization method where the initial model is built using the distance and dihedral angle 
restraints based on the template structure, which is subsequently optimized using the 
constraints.  This is more efficient than the distance geometry approach, where all lower 
and upper bounds models are constructed based on distances and dihedral angels variance.    
 COMPOSER is an example of modeling by rigid bodies.  This algorithm dissects 
the protein folds into core regions, variable loops and side chains.  The coordinates of the 
carbon atoms of conserved regions are calculated by averaging the template structures.  
The main carbons are generated by using the template with highest similarity.  Loops are 
generated and appended by searching the database to identify region that is similar to the 
environment of the template.  The side chains are added based on the energetic and the 
template conformation.  Lastly, the model is refined by minimizing the energetic. 
 SEGMOD is an example of algorithm that utilizes segment matching or 
coordinate reconstruction.  In this algorithm, the carbon atoms are used as guiding 
positions and the database is searched to find matching segments that are then fit into the 
guiding position to generate the model.   

  Regardless of the algorithm chosen, ultimately, the accuracy of modeling is 
dependent on the sequence identity of the unknown sequence and the given template.  
This is understandable given the way algorithm functions by basing the new model’s 
distance distribution using the template distribution.  Of the three algorithmic approaches, 
modeling by satisfaction of spatial restraints seems to be the most promising of all 
because it allows constraints derived from experimental data to be incorporated into the 
algorithm.  
 

Homology Modeling: Modeling Loop 
 Accurately modeling loops is necessary for determining the functional specificity 
of a protein.  For example, the exposed loop that resulted from deviation in the unknown 
sequence from the template can contribute to active and binding sites, which can 
determine the binding specificity of antigens by immunoglobulin.  Therefore, accuracy in 
loop modeling is favored.   

Loop modeling can be construed as a subset of protein folding problem.  When 
the residue is longer than 5 sequences long, the problem becomes difficult.  The fold is 



influenced by the core regions and also by the sequence of the loop.  One can approach 
this problem by applying the same technique used in predicting the protein structure.   

Ab initio method is essentially a search problem, which seeks the state that 
minimizes the energy function.  Representation of the state, the energy function and the 
search algorithms can be varied for optimal result.  Some examples of search algorithms 
used are Monte Carlo with simulated annealing, biased probability Monte Carlo search, 
and searching through discrete conformations by dynamic programming.  Monte Carlo 
algorithm essentially randomly samples the search space and at the end of simulation, the 
ensemble of randomly chosen points gives information about the search space.  Similarly, 
dynamic programming is the algorithm that is also used for Needleman / Wunsch 
sequence alignment technique.  Each residue is represented by finite number of discrete 
states, and the local minima of energy function is seeked through dynamic programming 
algorithm.  Degrees of freedom of representation can be varied, such as Cartesian 
coordinates, or dihedral angles, which can be optimized in continuous or discrete spaces.  
Loop prediction algorithms can be applied to model the interaction of several loops and 
loops interactions with ligands.   

Another approach to loop modeling is through the use of database search for 
similar configurations.  The stems, which are the atoms that precede and follow the actual 
loop are searched and the output of the search are filtered according to geometric 
configuration and sequence similarity.  The result is superposed and refined using energy 
function.  This approach is limited by the length of segment, because as the length 
increases, the amount of search space increases and subsequently the probability of hit is 
reduced.   

 
Fold Recognition / Protein Threading 

 There are more than 3000 different structural folds as reported by CATH database 
(Diagram 2).  When homology-modeling algorithm fails to return a matching template, 
which typically occurs when there are less than 30% match between the given sequence 
and homology, the sequence is matched against the folds database to see if any of the 
sequence can be adopted as a template.  The secondary structure of the sequence is 
predicted and that knowledge is used to match with the folds database that is promising.  
Then, the template is aligned with the unknown sequence, and the tertiary structure is 
modeled using the algorithms discussed above.  When fold recognition fails, ab initio 
method is utilized to predict the tertiary structure from the unknown sequence alone.   

  
Discussion 

 The accuracy of the final model is dependent on the quality of the template.  
Therefore, the presence of an appropriate template in the database is a necessity.  To 
improve the probability of making a match during the initial sequence alignment phase, 
there should be a coordinated effort to experimentally determine the tertiary structure of 
sequences that has low homology, so that the protein database can have representative 
tertiary structures available.   
 In addition to improving breath of availability in the protein database, sequence 
matching algorithms can be further refined so that a good match can be made.  Current 
use of PSI-BLAST and HMM offers relatively good result because both methods utilizes 
multiple sequence alignment to increase the probability of finding a good homology 



match.  Multiple sequence alignment is dependent on quality of the initial multiple 
sequence inputs.  Sometimes, protein family information can be used to provide good 
initial multiple sequence data.  Often, human intuition and intervention helps with 
selection of sequences that should be included in the creation of the profile.  Therefore, to 
fully automate protein structure prediction with high accuracy and good result requires an 
improved way to imitate the “human intuition” and knowledge, so that the sequence 
alignment step can be automated.   
 When a matching template is found, the unknown sequence and the template must 
be aligned.  Again, this step is dependent on the selection of a good template.  When the 
unknown sequence and the template is similar, they can be aligned with a high degree of 
accuracy.  When the similarity is low, the alignment becomes problematic.  Given the 
fact that there are more sequences than the experimentally determined models, there is a 
high probability that the “best” template is still not very similar to the unknown sequence.  
If experimentally determining the structure is not an option, one could attempt to use 
multiple templates, since accuracy of homology modeling is dependent on the degree of 
template and unknown sequence similarity.  It is difficult to make a good alignment when 
the similarity is low between the template and the unknown sequence.  Therefore, 
creating many three dimensional candidates and screening out the model with the best 
energetic may be an alternative way of approaching the problem.  Lastly, advancement in 
the protein-folding field could potentially solve the problem of low similarity template.  
If ab initio method becomes computationally feasible and accurate, one could choose to 
model via ab initio when homology modeling fails to find a template with high degree of 
similarity.  
 Once the template and the sequence are aligned, modeling algorithm can create 
the tertiary structure.  This step is highly dependent on the accuracy of the previous steps: 
the finding of good template match, and the successful alignment of the unknown 
sequence and the template.  The template provides the initial framework of the model, 
and therefore the resulting model’s main skeleton does not deviate from the template very 
much.  Therefore, the improvement in the modeling step depends on the accurate 
placement of the side chains and the accurate prediction of the loop placement.  
Essentially, once a good template is found, the general framework of the protein is 
formed.  Therefore, the advancement in this field benefits from the improvement of ab 
initio technique.  A better way to model the interaction of the side chain with the 
template-based framework combined with the database search technique for finding side 
chains with similar environmental configuration could improve the accuracy of the 
modeling step.   
 Protein structure prediction is composed of four steps: template selection, 
template-sequence alignment, modeling, and evaluation.  These steps all benefit from 
human intervention, especially the template selection and alignment stage, as these two 
steps are crucial in creating an accurate model.  Therefore, fully automatic protein 
structure prediction requires a way to imitate the “human intuition” of experts, which is 
crucial in creating a good protein model.   
 Another approach to improving the result of the model is to combine techniques 
from the three categories.  A “Frankenstein’s Monster” from CASP5 is an example of 
this approach.  As this approach shows, the distinction between the three subcategories is 
beginning to blur.  Instead of using one template, multiple templates are used to pick and 



choose the “good segments.”  These segments are stitched together, modeled and 
evaluated.  Then, the information from secondary structure prediction is used to improve 
the structure of the model.  Lastly, the improved models are stitched together to generate 
another template.  The missing region in the stitched together template is provided by the 
ab initio method.  This final template is utilized to model and the energetic is minimized.  
This method requires expertise and human intervention.  Therefore, more work is needed 
to codify the human intuition and to automate the process. 
 
  
 
 

             
Diagram 1.  Predicting the Model Using Homology. 

 

 

 



CATH v2.5.1 

Version 2.5.1 

Date 28-01-2004 

        

Mainly Alpha 5 227 428 948 1713 3946 10155 

Mainly Beta 19 139 292 951 2344 5011 14259 

Alpha Beta 12 368 648 2010 3631 8639 23025 

Few Secondary Structures 1 86 91 114 225 378 952 

Multi-domain chains 1 1053 1057 1071 2186 5801 12471 

Preliminary single domain assigments 1 371 374 422 479 789 1663 

Multi-domain domains 2 31 31 49 67 139 287 

CATH-35 Sequence families 1 997 997 997 1108 2154 3431 

Fragments from multi-chain domains 1 28 28 30 33 56 106 
 

Diagram 2. Structural Folds at CATH 
(http://www.biochem.ucl.ac.uk/bsm/cath/releases.html ) 
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